mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-07 06:20:45 +00:00
# What does this PR do? * Removes a bunch of distros * Removed distros were added into the "starter" distribution * Doc for "starter" has been added * Partially reverts https://github.com/meta-llama/llama-stack/pull/2482 since inference providers are disabled by default and can be turned on manually via env variable. * Disables safety in starter distro Closes: https://github.com/meta-llama/llama-stack/issues/2502. ~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama to work properly in the CI.~ TODO: - [ ] We can only update `install.sh` when we get a new release. - [x] Update providers documentation - [ ] Update notebooks to reference starter instead of ollama Signed-off-by: Sébastien Han <seb@redhat.com>
326 lines
12 KiB
Python
326 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from typing import Any
|
|
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.distribution.datatypes import (
|
|
ModelInput,
|
|
Provider,
|
|
ProviderSpec,
|
|
ToolGroupInput,
|
|
)
|
|
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
|
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
|
|
from llama_stack.providers.inline.inference.sentence_transformers import (
|
|
SentenceTransformersInferenceConfig,
|
|
)
|
|
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
|
|
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
|
from llama_stack.providers.inline.vector_io.milvus.config import (
|
|
MilvusVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
|
SQLiteVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.registry.inference import available_providers
|
|
from llama_stack.providers.remote.inference.anthropic.models import (
|
|
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.fireworks.models import (
|
|
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.gemini.models import (
|
|
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.groq.models import (
|
|
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.openai.models import (
|
|
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.sambanova.models import (
|
|
MODEL_ENTRIES as SAMBANOVA_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.inference.together.models import (
|
|
MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES,
|
|
)
|
|
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
|
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
|
PGVectorVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
|
|
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
|
|
from llama_stack.templates.template import (
|
|
DistributionTemplate,
|
|
RunConfigSettings,
|
|
get_model_registry,
|
|
)
|
|
|
|
|
|
def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEntry]:
|
|
"""Get model entries for a specific provider type."""
|
|
model_entries_map = {
|
|
"openai": OPENAI_MODEL_ENTRIES,
|
|
"fireworks": FIREWORKS_MODEL_ENTRIES,
|
|
"together": TOGETHER_MODEL_ENTRIES,
|
|
"anthropic": ANTHROPIC_MODEL_ENTRIES,
|
|
"gemini": GEMINI_MODEL_ENTRIES,
|
|
"groq": GROQ_MODEL_ENTRIES,
|
|
"sambanova": SAMBANOVA_MODEL_ENTRIES,
|
|
}
|
|
|
|
# Special handling for providers with dynamic model entries
|
|
if provider_type == "ollama":
|
|
return [
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
|
|
model_type=ModelType.llm,
|
|
),
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": "${env.OLLAMA_EMBEDDING_DIMENSION:=384}",
|
|
},
|
|
),
|
|
]
|
|
elif provider_type == "vllm":
|
|
return [
|
|
ProviderModelEntry(
|
|
provider_model_id="${env.VLLM_INFERENCE_MODEL:=__disabled__}",
|
|
model_type=ModelType.llm,
|
|
),
|
|
]
|
|
|
|
return model_entries_map.get(provider_type, [])
|
|
|
|
|
|
def _get_config_for_provider(provider_spec: ProviderSpec) -> dict[str, Any]:
|
|
"""Get configuration for a provider using its adapter's config class."""
|
|
config_class = instantiate_class_type(provider_spec.config_class)
|
|
|
|
if hasattr(config_class, "sample_run_config"):
|
|
config: dict[str, Any] = config_class.sample_run_config()
|
|
return config
|
|
return {}
|
|
|
|
|
|
def get_remote_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
|
|
all_providers = available_providers()
|
|
|
|
# Filter out inline providers and watsonx - the starter distro only exposes remote providers
|
|
remote_providers = [
|
|
provider
|
|
for provider in all_providers
|
|
# TODO: re-add once the Python 3.13 issue is fixed
|
|
# discussion: https://github.com/meta-llama/llama-stack/pull/2327#discussion_r2156883828
|
|
if hasattr(provider, "adapter") and provider.adapter.adapter_type != "watsonx"
|
|
]
|
|
|
|
providers = []
|
|
available_models = {}
|
|
|
|
for provider_spec in remote_providers:
|
|
provider_type = provider_spec.adapter.adapter_type
|
|
|
|
# Build the environment variable name for enabling this provider
|
|
env_var = f"ENABLE_{provider_type.upper().replace('-', '_').replace('::', '_')}"
|
|
model_entries = _get_model_entries_for_provider(provider_type)
|
|
config = _get_config_for_provider(provider_spec)
|
|
providers.append(
|
|
(
|
|
f"${{env.{env_var}:=__disabled__}}",
|
|
provider_type,
|
|
model_entries,
|
|
config,
|
|
)
|
|
)
|
|
available_models[f"${{env.{env_var}:=__disabled__}}"] = model_entries
|
|
|
|
inference_providers = []
|
|
for provider_id, provider_type, model_entries, config in providers:
|
|
inference_providers.append(
|
|
Provider(
|
|
provider_id=provider_id,
|
|
provider_type=f"remote::{provider_type}",
|
|
config=config,
|
|
)
|
|
)
|
|
available_models[provider_id] = model_entries
|
|
return inference_providers, available_models
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
remote_inference_providers, available_models = get_remote_inference_providers()
|
|
providers = {
|
|
"inference": ([p.provider_type for p in remote_inference_providers] + ["inline::sentence-transformers"]),
|
|
"vector_io": ["inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector"],
|
|
"files": ["inline::localfs"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"post_training": ["inline::huggingface"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
"tool_runtime": [
|
|
"remote::brave-search",
|
|
"remote::tavily-search",
|
|
"inline::rag-runtime",
|
|
"remote::model-context-protocol",
|
|
],
|
|
}
|
|
name = "starter"
|
|
|
|
vector_io_providers = [
|
|
Provider(
|
|
provider_id="${env.ENABLE_FAISS:=faiss}",
|
|
provider_type="inline::faiss",
|
|
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_SQLITE_VEC:=__disabled__}",
|
|
provider_type="inline::sqlite-vec",
|
|
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_MILVUS:=__disabled__}",
|
|
provider_type="inline::milvus",
|
|
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_CHROMADB:=__disabled__}",
|
|
provider_type="remote::chromadb",
|
|
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_PGVECTOR:=__disabled__}",
|
|
provider_type="remote::pgvector",
|
|
config=PGVectorVectorIOConfig.sample_run_config(
|
|
db="${env.PGVECTOR_DB:=}",
|
|
user="${env.PGVECTOR_USER:=}",
|
|
password="${env.PGVECTOR_PASSWORD:=}",
|
|
),
|
|
),
|
|
]
|
|
files_provider = Provider(
|
|
provider_id="meta-reference-files",
|
|
provider_type="inline::localfs",
|
|
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
embedding_provider = Provider(
|
|
provider_id="${env.ENABLE_SENTENCE_TRANSFORMERS:=sentence-transformers}",
|
|
provider_type="inline::sentence-transformers",
|
|
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
|
)
|
|
post_training_provider = Provider(
|
|
provider_id="huggingface",
|
|
provider_type="inline::huggingface",
|
|
config=HuggingFacePostTrainingConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::websearch",
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
]
|
|
embedding_model = ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
provider_id=embedding_provider.provider_id,
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": 384,
|
|
},
|
|
)
|
|
|
|
default_models = get_model_registry(available_models)
|
|
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Quick start template for running Llama Stack with several popular providers",
|
|
container_image=None,
|
|
template_path=None,
|
|
providers=providers,
|
|
available_models_by_provider=available_models,
|
|
additional_pip_packages=PostgresSqlStoreConfig.pip_packages(),
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": remote_inference_providers + [embedding_provider],
|
|
"vector_io": vector_io_providers,
|
|
"files": [files_provider],
|
|
"post_training": [post_training_provider],
|
|
},
|
|
default_models=default_models + [embedding_model],
|
|
default_tool_groups=default_tool_groups,
|
|
# TODO: add a way to enable/disable shields on the fly
|
|
# default_shields=[
|
|
# ShieldInput(provider_id="llama-guard", shield_id="${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-8B}")
|
|
# ],
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMA_STACK_PORT": (
|
|
"8321",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"FIREWORKS_API_KEY": (
|
|
"",
|
|
"Fireworks API Key",
|
|
),
|
|
"OPENAI_API_KEY": (
|
|
"",
|
|
"OpenAI API Key",
|
|
),
|
|
"GROQ_API_KEY": (
|
|
"",
|
|
"Groq API Key",
|
|
),
|
|
"ANTHROPIC_API_KEY": (
|
|
"",
|
|
"Anthropic API Key",
|
|
),
|
|
"GEMINI_API_KEY": (
|
|
"",
|
|
"Gemini API Key",
|
|
),
|
|
"SAMBANOVA_API_KEY": (
|
|
"",
|
|
"SambaNova API Key",
|
|
),
|
|
"VLLM_URL": (
|
|
"http://localhost:8000/v1",
|
|
"vLLM URL",
|
|
),
|
|
"VLLM_INFERENCE_MODEL": (
|
|
"",
|
|
"Optional vLLM Inference Model to register on startup",
|
|
),
|
|
"OLLAMA_URL": (
|
|
"http://localhost:11434",
|
|
"Ollama URL",
|
|
),
|
|
"OLLAMA_INFERENCE_MODEL": (
|
|
"",
|
|
"Optional Ollama Inference Model to register on startup",
|
|
),
|
|
"OLLAMA_EMBEDDING_MODEL": (
|
|
"",
|
|
"Optional Ollama Embedding Model to register on startup",
|
|
),
|
|
"OLLAMA_EMBEDDING_DIMENSION": (
|
|
"384",
|
|
"Ollama Embedding Dimension",
|
|
),
|
|
},
|
|
)
|