mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
* migrate memory banks to Resource and new registration * address feedback * address feedback * fix tests * pgvector fix * pgvector fix v2 * remove auto discovery * change register signature to make params required * update client * client fix * use annotated union to parse * remove base MemoryBank inheritence --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
163 lines
4.6 KiB
Python
163 lines
4.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import os
|
|
from pathlib import Path
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import fire
|
|
import httpx
|
|
|
|
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.apis.memory_banks.client import MemoryBanksClient
|
|
from llama_stack.providers.utils.memory.file_utils import data_url_from_file
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:
|
|
return MemoryClient(config.url)
|
|
|
|
|
|
class MemoryClient(Memory):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
) -> None:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory/insert",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"documents": [d.dict() for d in documents],
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory/query",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"query": query,
|
|
"params": params,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
return QueryDocumentsResponse(**r.json())
|
|
|
|
|
|
async def run_main(host: str, port: int, stream: bool):
|
|
banks_client = MemoryBanksClient(f"http://{host}:{port}")
|
|
|
|
bank = VectorMemoryBank(
|
|
identifier="test_bank",
|
|
provider_id="",
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
)
|
|
await banks_client.register_memory_bank(
|
|
bank.identifier,
|
|
VectorMemoryBankParams(
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
provider_resource_id=bank.identifier,
|
|
)
|
|
|
|
retrieved_bank = await banks_client.get_memory_bank(bank.identifier)
|
|
assert retrieved_bank is not None
|
|
assert retrieved_bank.embedding_model == "all-MiniLM-L6-v2"
|
|
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
documents = [
|
|
MemoryBankDocument(
|
|
document_id=f"num-{i}",
|
|
content=URL(
|
|
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
|
),
|
|
mime_type="text/plain",
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
this_dir = os.path.dirname(__file__)
|
|
files = [Path(this_dir).parent.parent.parent / "CONTRIBUTING.md"]
|
|
documents += [
|
|
MemoryBankDocument(
|
|
document_id=f"num-{i}",
|
|
content=data_url_from_file(path),
|
|
)
|
|
for i, path in enumerate(files)
|
|
]
|
|
|
|
client = MemoryClient(f"http://{host}:{port}")
|
|
|
|
# insert some documents
|
|
await client.insert_documents(
|
|
bank_id=bank.identifier,
|
|
documents=documents,
|
|
)
|
|
|
|
# query the documents
|
|
response = await client.query_documents(
|
|
bank_id=bank.identifier,
|
|
query=[
|
|
"How do I use Lora?",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
response = await client.query_documents(
|
|
bank_id=bank.identifier,
|
|
query=[
|
|
"Tell me more about llama3 and torchtune",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
|
|
def main(host: str, port: int, stream: bool = True):
|
|
asyncio.run(run_main(host, port, stream))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|