mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
# What does this PR do? The notebook was reverted(https://github.com/llamastack/llama-stack/pull/3259) as it had some local paths, I missed correcting. Trying with corrections now ## Test Plan Ran the Jupyter notebook
701 lines
22 KiB
Text
701 lines
22 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1ztegmwm4sp",
|
|
"metadata": {},
|
|
"source": [
|
|
"## LlamaStack + LangChain Integration Tutorial\n",
|
|
"\n",
|
|
"This notebook demonstrates how to integrate **LlamaStack** with **LangChain** to build a complete RAG (Retrieval-Augmented Generation) system.\n",
|
|
"\n",
|
|
"### Overview\n",
|
|
"\n",
|
|
"- **LlamaStack**: Provides the infrastructure for running LLMs and Open AI Compatible Vector Stores\n",
|
|
"- **LangChain**: Provides the framework for chaining operations and prompt templates\n",
|
|
"- **Integration**: Uses LlamaStack's OpenAI-compatible API with LangChain\n",
|
|
"\n",
|
|
"### What You'll See\n",
|
|
"\n",
|
|
"1. Setting up LlamaStack server with Fireworks AI provider\n",
|
|
"2. Creating and Querying Vector Stores\n",
|
|
"3. Building RAG chains with LangChain + LLAMAStack\n",
|
|
"4. Querying the chain for relevant information\n",
|
|
"\n",
|
|
"### Prerequisites\n",
|
|
"\n",
|
|
"- Fireworks API key\n",
|
|
"\n",
|
|
"---\n",
|
|
"\n",
|
|
"### 1. Installation and Setup"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2ktr5ls2cas",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Install Required Dependencies\n",
|
|
"\n",
|
|
"First, we install all the necessary packages for LangChain and FastAPI integration."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "5b6a6a17-b931-4bea-8273-0d6e5563637a",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Requirement already satisfied: uv in /Users/swapna942/miniconda3/lib/python3.12/site-packages (0.7.20)\n",
|
|
"\u001b[2mUsing Python 3.12.11 environment at: /Users/swapna942/miniconda3\u001b[0m\n",
|
|
"\u001b[2mAudited \u001b[1m7 packages\u001b[0m \u001b[2min 42ms\u001b[0m\u001b[0m\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!pip install uv\n",
|
|
"!uv pip install fastapi uvicorn \"langchain>=0.2\" langchain-openai \\\n",
|
|
" langchain-community langchain-text-splitters \\\n",
|
|
" faiss-cpu"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "wmt9jvqzh7n",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 2. LlamaStack Server Setup\n",
|
|
"\n",
|
|
"#### Build and Start LlamaStack Server\n",
|
|
"\n",
|
|
"This section sets up the LlamaStack server with:\n",
|
|
"- **Fireworks AI** as the inference provider\n",
|
|
"- **Sentence Transformers** for embeddings\n",
|
|
"\n",
|
|
"The server runs on `localhost:8321` and provides OpenAI-compatible endpoints."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "dd2dacf3-ec8b-4cc7-8ff4-b5b6ea4a6e9e",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import subprocess\n",
|
|
"import time\n",
|
|
"\n",
|
|
"# Remove UV_SYSTEM_PYTHON to ensure uv creates a proper virtual environment\n",
|
|
"# instead of trying to use system Python globally, which could cause permission issues\n",
|
|
"# and package conflicts with the system's Python installation\n",
|
|
"if \"UV_SYSTEM_PYTHON\" in os.environ:\n",
|
|
" del os.environ[\"UV_SYSTEM_PYTHON\"]\n",
|
|
"\n",
|
|
"def run_llama_stack_server_background():\n",
|
|
" \"\"\"Build and run LlamaStack server in one step using --run flag\"\"\"\n",
|
|
" log_file = open(\"llama_stack_server.log\", \"w\")\n",
|
|
" process = subprocess.Popen(\n",
|
|
" \"uv run --with llama-stack llama stack build --distro starter --image-type venv --run\",\n",
|
|
" shell=True,\n",
|
|
" stdout=log_file,\n",
|
|
" stderr=log_file,\n",
|
|
" text=True,\n",
|
|
" )\n",
|
|
"\n",
|
|
" print(f\"Building and starting Llama Stack server with PID: {process.pid}\")\n",
|
|
" return process\n",
|
|
"\n",
|
|
"\n",
|
|
"def wait_for_server_to_start():\n",
|
|
" import requests\n",
|
|
" from requests.exceptions import ConnectionError\n",
|
|
"\n",
|
|
" url = \"http://0.0.0.0:8321/v1/health\"\n",
|
|
" max_retries = 30\n",
|
|
" retry_interval = 1\n",
|
|
"\n",
|
|
" print(\"Waiting for server to start\", end=\"\")\n",
|
|
" for _ in range(max_retries):\n",
|
|
" try:\n",
|
|
" response = requests.get(url)\n",
|
|
" if response.status_code == 200:\n",
|
|
" print(\"\\nServer is ready!\")\n",
|
|
" return True\n",
|
|
" except ConnectionError:\n",
|
|
" print(\".\", end=\"\", flush=True)\n",
|
|
" time.sleep(retry_interval)\n",
|
|
"\n",
|
|
" print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n",
|
|
" return False\n",
|
|
"\n",
|
|
"\n",
|
|
"def kill_llama_stack_server():\n",
|
|
" # Kill any existing llama stack server processes using pkill command\n",
|
|
" os.system(\"pkill -f llama_stack.core.server.server\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "28bd8dbd-4576-4e76-813f-21ab94db44a2",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Building and starting Llama Stack server with PID: 19747\n",
|
|
"Waiting for server to start....\n",
|
|
"Server is ready!\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"server_process = run_llama_stack_server_background()\n",
|
|
"assert wait_for_server_to_start()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "gr9cdcg4r7n",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Install LlamaStack Client\n",
|
|
"\n",
|
|
"Install the client library to interact with the LlamaStack server."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "487d2dbc-d071-400e-b4f0-dcee58f8dc95",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[2mUsing Python 3.12.11 environment at: /Users/swapna942/miniconda3\u001b[0m\n",
|
|
"\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 27ms\u001b[0m\u001b[0m\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!uv pip install llama_stack_client"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0j5hag7l9x89",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 3. Initialize LlamaStack Client\n",
|
|
"\n",
|
|
"Create a client connection to the LlamaStack server with API keys for different providers:\n",
|
|
"\n",
|
|
"- **Fireworks API Key**: For Fireworks models\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "ab4eff97-4565-4c73-b1b3-0020a4c7e2a5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from llama_stack_client import LlamaStackClient\n",
|
|
"\n",
|
|
"client = LlamaStackClient(\n",
|
|
" base_url=\"http://0.0.0.0:8321\",\n",
|
|
" provider_data={\"fireworks_api_key\": \"***\"},\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "vwhexjy1e8o",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Explore Available Models and Safety Features\n",
|
|
"\n",
|
|
"Check what models and safety shields are available through your LlamaStack instance."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "880443ef-ac3c-48b1-a80a-7dab5b25ac61",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: GET http://0.0.0.0:8321/v1/models \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:httpx:HTTP Request: GET http://0.0.0.0:8321/v1/shields \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Available Fireworks models:\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p1-70b-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p1-405b-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p2-3b-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p2-11b-vision-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p2-90b-vision-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama-v3p3-70b-instruct\n",
|
|
"- fireworks/accounts/fireworks/models/llama4-scout-instruct-basic\n",
|
|
"- fireworks/accounts/fireworks/models/llama4-maverick-instruct-basic\n",
|
|
"- fireworks/nomic-ai/nomic-embed-text-v1.5\n",
|
|
"- fireworks/accounts/fireworks/models/llama-guard-3-8b\n",
|
|
"- fireworks/accounts/fireworks/models/llama-guard-3-11b-vision\n",
|
|
"----\n",
|
|
"Available shields (safety models):\n",
|
|
"code-scanner\n",
|
|
"llama-guard\n",
|
|
"nemo-guardrail\n",
|
|
"----\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"Available Fireworks models:\")\n",
|
|
"for m in client.models.list():\n",
|
|
" if m.identifier.startswith(\"fireworks/\"):\n",
|
|
" print(f\"- {m.identifier}\")\n",
|
|
"\n",
|
|
"print(\"----\")\n",
|
|
"print(\"Available shields (safety models):\")\n",
|
|
"for s in client.shields.list():\n",
|
|
" print(s.identifier)\n",
|
|
"print(\"----\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "gojp7at31ht",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 4. Vector Store Setup\n",
|
|
"\n",
|
|
"#### Create a Vector Store with File Upload\n",
|
|
"\n",
|
|
"Create a vector store using the OpenAI-compatible vector stores API:\n",
|
|
"\n",
|
|
"- **Vector Store**: OpenAI-compatible vector store for document storage\n",
|
|
"- **File Upload**: Automatic chunking and embedding of uploaded files \n",
|
|
"- **Embedding Model**: Sentence Transformers model for text embeddings\n",
|
|
"- **Dimensions**: 384-dimensional embeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "be2c2899-ea53-4e5f-b6b8-ed425f5d6572",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/files \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/files \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/files \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"File(id='file-54652c95c56c4c34918a97d7ff8a4320', bytes=41, created_at=1757442621, expires_at=1788978621, filename='shipping_policy.txt', object='file', purpose='assistants')\n",
|
|
"File(id='file-fb1227c1d1854da1bd774d21e5b7e41c', bytes=48, created_at=1757442621, expires_at=1788978621, filename='returns_policy.txt', object='file', purpose='assistants')\n",
|
|
"File(id='file-673f874852fe42798675a13d06a256e2', bytes=45, created_at=1757442621, expires_at=1788978621, filename='support.txt', object='file', purpose='assistants')\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/vector_stores \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from io import BytesIO\n",
|
|
"\n",
|
|
"docs = [\n",
|
|
" (\"Acme ships globally in 3-5 business days.\", {\"title\": \"Shipping Policy\"}),\n",
|
|
" (\"Returns are accepted within 30 days of purchase.\", {\"title\": \"Returns Policy\"}),\n",
|
|
" (\"Support is available 24/7 via chat and email.\", {\"title\": \"Support\"}),\n",
|
|
"]\n",
|
|
"\n",
|
|
"file_ids = []\n",
|
|
"for content, metadata in docs:\n",
|
|
" with BytesIO(content.encode()) as file_buffer:\n",
|
|
" file_buffer.name = f\"{metadata['title'].replace(' ', '_').lower()}.txt\"\n",
|
|
" create_file_response = client.files.create(file=file_buffer, purpose=\"assistants\")\n",
|
|
" print(create_file_response)\n",
|
|
" file_ids.append(create_file_response.id)\n",
|
|
"\n",
|
|
"# Create vector store with files\n",
|
|
"vector_store = client.vector_stores.create(\n",
|
|
" name=\"acme_docs\",\n",
|
|
" file_ids=file_ids,\n",
|
|
" embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\",\n",
|
|
" embedding_dimension=384,\n",
|
|
" provider_id=\"faiss\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9061tmi1zpq",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Test Vector Store Search\n",
|
|
"\n",
|
|
"Query the vector store. This performs semantic search to find relevant documents based on the query."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "ba9d1901-bd5e-4216-b3e6-19dc74551cc6",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/vector_stores/vs_708c060b-45da-423e-8354-68529b4fd1a6/search \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Acme ships globally in 3-5 business days.\n",
|
|
"Returns are accepted within 30 days of purchase.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"search_response = client.vector_stores.search(\n",
|
|
" vector_store_id=vector_store.id,\n",
|
|
" query=\"How long does shipping take?\",\n",
|
|
" max_num_results=2\n",
|
|
")\n",
|
|
"for result in search_response.data:\n",
|
|
" content = result.content[0].text\n",
|
|
" print(content)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "usne6mbspms",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 5. LangChain Integration\n",
|
|
"\n",
|
|
"#### Configure LangChain with LlamaStack\n",
|
|
"\n",
|
|
"Set up LangChain to use LlamaStack's OpenAI-compatible API:\n",
|
|
"\n",
|
|
"- **Base URL**: Points to LlamaStack's OpenAI endpoint\n",
|
|
"- **Headers**: Include Fireworks API key for model access\n",
|
|
"- **Model**: Use Meta Llama v3p1 8b instruct model for inference"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "c378bd10-09c2-417c-bdfc-1e0a2dd19084",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain_openai import ChatOpenAI\n",
|
|
"\n",
|
|
"# Point LangChain to Llamastack Server\n",
|
|
"llm = ChatOpenAI(\n",
|
|
" base_url=\"http://0.0.0.0:8321/v1/openai/v1\",\n",
|
|
" api_key=\"dummy\",\n",
|
|
" model=\"fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct\",\n",
|
|
" default_headers={\"X-LlamaStack-Provider-Data\": '{\"fireworks_api_key\": \"***\"}'},\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5a4ddpcuk3l",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Test LLM Connection\n",
|
|
"\n",
|
|
"Verify that LangChain can successfully communicate with the LlamaStack server."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "f88ffb5a-657b-4916-9375-c6ddc156c25e",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content=\"A llama's gentle eyes shine bright,\\nIn the Andes, it roams through morning light.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': None, 'model_name': 'fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct', 'system_fingerprint': None, 'id': 'chatcmpl-602b5967-82a3-476b-9cd2-7d3b29b76ee8', 'service_tier': None, 'finish_reason': 'stop', 'logprobs': None}, id='run--0933c465-ff4d-4a7b-b7fb-fd97dd8244f3-0')"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Test llm with simple message\n",
|
|
"messages = [\n",
|
|
" {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n",
|
|
" {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n",
|
|
"]\n",
|
|
"llm.invoke(messages)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0xh0jg6a0l4a",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 6. Building the RAG Chain\n",
|
|
"\n",
|
|
"#### Create a Complete RAG Pipeline\n",
|
|
"\n",
|
|
"Build a LangChain pipeline that combines:\n",
|
|
"\n",
|
|
"1. **Vector Search**: Query LlamaStack's Open AI compatible Vector Store\n",
|
|
"2. **Context Assembly**: Format retrieved documents\n",
|
|
"3. **Prompt Template**: Structure the input for the LLM\n",
|
|
"4. **LLM Generation**: Generate answers using context\n",
|
|
"5. **Output Parsing**: Extract the final response\n",
|
|
"\n",
|
|
"**Chain Flow**: `Query → Vector Search → Context + Question → LLM → Response`"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "9684427d-dcc7-4544-9af5-8b110d014c42",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# LangChain for prompt template and chaining + LLAMA Stack Client Vector DB and LLM chat completion\n",
|
|
"from langchain_core.output_parsers import StrOutputParser\n",
|
|
"from langchain_core.prompts import ChatPromptTemplate\n",
|
|
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
|
"\n",
|
|
"\n",
|
|
"def join_docs(docs):\n",
|
|
" return \"\\n\\n\".join([f\"[{d.filename}] {d.content[0].text}\" for d in docs.data])\n",
|
|
"\n",
|
|
"PROMPT = ChatPromptTemplate.from_messages(\n",
|
|
" [\n",
|
|
" (\"system\", \"You are a helpful assistant. Use the following context to answer.\"),\n",
|
|
" (\"user\", \"Question: {question}\\n\\nContext:\\n{context}\"),\n",
|
|
" ]\n",
|
|
")\n",
|
|
"\n",
|
|
"vector_step = RunnableLambda(\n",
|
|
" lambda x: client.vector_stores.search(\n",
|
|
" vector_store_id=vector_store.id,\n",
|
|
" query=x,\n",
|
|
" max_num_results=2\n",
|
|
" )\n",
|
|
" )\n",
|
|
"\n",
|
|
"chain = (\n",
|
|
" {\"context\": vector_step | RunnableLambda(join_docs), \"question\": RunnablePassthrough()}\n",
|
|
" | PROMPT\n",
|
|
" | llm\n",
|
|
" | StrOutputParser()\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0onu6rhphlra",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 7. Testing the RAG System\n",
|
|
"\n",
|
|
"#### Example 1: Shipping Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "03322188-9509-446a-a4a8-ce3bb83ec87c",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/vector_stores/vs_708c060b-45da-423e-8354-68529b4fd1a6/search \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"❓ How long does shipping take?\n",
|
|
"💡 Acme ships globally in 3-5 business days. This means that shipping typically takes between 3 to 5 working days from the date of dispatch or order fulfillment.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"query = \"How long does shipping take?\"\n",
|
|
"response = chain.invoke(query)\n",
|
|
"print(\"❓\", query)\n",
|
|
"print(\"💡\", response)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b7krhqj88ku",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Example 2: Returns Policy Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "61995550-bb0b-46a8-a5d0-023207475d60",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/vector_stores/vs_708c060b-45da-423e-8354-68529b4fd1a6/search \"HTTP/1.1 200 OK\"\n",
|
|
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/openai/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"❓ Can I return a product after 40 days?\n",
|
|
"💡 Based on the provided context, you cannot return a product after 40 days. The return window is limited to 30 days from the date of purchase.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"query = \"Can I return a product after 40 days?\"\n",
|
|
"response = chain.invoke(query)\n",
|
|
"print(\"❓\", query)\n",
|
|
"print(\"💡\", response)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "h4w24fadvjs",
|
|
"metadata": {},
|
|
"source": [
|
|
"---\n",
|
|
"We have successfully built a RAG system that combines:\n",
|
|
"\n",
|
|
"- **LlamaStack** for infrastructure (LLM serving + Vector Store)\n",
|
|
"- **LangChain** for orchestration (prompts + chains)\n",
|
|
"- **Fireworks** for high-quality language models\n",
|
|
"\n",
|
|
"### Key Benefits\n",
|
|
"\n",
|
|
"1. **Unified Infrastructure**: Single server for LLMs and Vector Store\n",
|
|
"2. **OpenAI Compatibility**: Easy integration with existing LangChain code\n",
|
|
"3. **Multi-Provider Support**: Switch between different LLM providers\n",
|
|
"4. **Production Ready**: Built-in safety shields and monitoring\n",
|
|
"\n",
|
|
"### Next Steps\n",
|
|
"\n",
|
|
"- Add more sophisticated document processing\n",
|
|
"- Implement conversation memory\n",
|
|
"- Add safety filtering and monitoring\n",
|
|
"- Scale to larger document collections\n",
|
|
"- Integrate with web frameworks like FastAPI or Streamlit\n",
|
|
"\n",
|
|
"---\n",
|
|
"\n",
|
|
"##### 🔧 Cleanup\n",
|
|
"\n",
|
|
"Don't forget to stop the LlamaStack server when you're done:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"kill_llama_stack_server()\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "15647c46-22ce-4698-af3f-8161329d8e3a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"kill_llama_stack_server()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|