llama-stack-mirror/llama_stack/providers/remote/inference/tgi/tgi.py
Matthew Farrellee d266c59c2a
chore: remove deprecated inference.chat_completion implementations (#3654)
# What does this PR do?

remove unused chat_completion implementations

vllm features ported -
 - requires max_tokens be set, use config value
 - set tool_choice to none if no tools provided


## Test Plan

ci
2025-10-03 07:55:34 -04:00

194 lines
6.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from huggingface_hub import AsyncInferenceClient, HfApi
from pydantic import SecretStr
from llama_stack.apis.inference import (
ChatCompletionRequest,
Inference,
OpenAIEmbeddingsResponse,
ResponseFormat,
ResponseFormatType,
SamplingParams,
)
from llama_stack.apis.models import Model
from llama_stack.apis.models.models import ModelType
from llama_stack.log import get_logger
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_model_input_info,
)
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
log = get_logger(name=__name__, category="inference::tgi")
def build_hf_repo_model_entries():
return [
build_hf_repo_model_entry(
model.huggingface_repo,
model.descriptor(),
)
for model in all_registered_models()
if model.huggingface_repo
]
class _HfAdapter(
OpenAIMixin,
Inference,
):
url: str
api_key: SecretStr
hf_client: AsyncInferenceClient
max_tokens: int
model_id: str
overwrite_completion_id = True # TGI always returns id=""
def __init__(self) -> None:
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
self.huggingface_repo_to_llama_model_id = {
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
}
def get_api_key(self):
return self.api_key.get_secret_value()
def get_base_url(self):
return self.url
async def shutdown(self) -> None:
pass
async def list_models(self) -> list[Model] | None:
models = []
async for model in self.client.models.list():
models.append(
Model(
identifier=model.id,
provider_resource_id=model.id,
provider_id=self.__provider_id__,
metadata={},
model_type=ModelType.llm,
)
)
return models
async def register_model(self, model: Model) -> Model:
if model.provider_resource_id != self.model_id:
raise ValueError(
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
)
return model
async def unregister_model(self, model_id: str) -> None:
pass
def _get_max_new_tokens(self, sampling_params, input_tokens):
return min(
sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)
def _build_options(
self,
sampling_params: SamplingParams | None = None,
fmt: ResponseFormat = None,
):
options = get_sampling_options(sampling_params)
# TGI does not support temperature=0 when using greedy sampling
# We set it to 1e-3 instead, anything lower outputs garbage from TGI
# We can use top_p sampling strategy to specify lower temperature
if abs(options["temperature"]) < 1e-10:
options["temperature"] = 1e-3
# delete key "max_tokens" from options since its not supported by the API
options.pop("max_tokens", None)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["grammar"] = {
"type": "json",
"value": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
raise ValueError("Grammar response format not supported yet")
else:
raise ValueError(f"Unexpected response format: {fmt.type}")
return options
async def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = await chat_completion_request_to_model_input_info(
request, self.register_helper.get_llama_model(request.model)
)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**self._build_options(request.sampling_params, request.response_format),
)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
class TGIAdapter(_HfAdapter):
async def initialize(self, config: TGIImplConfig) -> None:
if not config.url:
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
log.info(f"Initializing TGI client with url={config.url}")
self.hf_client = AsyncInferenceClient(model=config.url, provider="hf-inference")
endpoint_info = await self.hf_client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
self.model_id = endpoint_info["model_id"]
self.url = f"{config.url.rstrip('/')}/v1"
self.api_key = SecretStr("NO_KEY")
class InferenceAPIAdapter(_HfAdapter):
async def initialize(self, config: InferenceAPIImplConfig) -> None:
self.hf_client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
endpoint_info = await self.hf_client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
self.model_id = endpoint_info["model_id"]
# TODO: how do we set url for this?
class InferenceEndpointAdapter(_HfAdapter):
async def initialize(self, config: InferenceEndpointImplConfig) -> None:
# Get the inference endpoint details
api = HfApi(token=config.api_token.get_secret_value())
endpoint = api.get_inference_endpoint(config.endpoint_name)
# Wait for the endpoint to be ready (if not already)
endpoint.wait(timeout=60)
# Initialize the adapter
self.hf_client = endpoint.async_client
self.model_id = endpoint.repository
self.max_tokens = int(endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"])
# TODO: how do we set url for this?