# What does this PR do? See individual commit messages. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Apply this diff: ``` diff --git a/llama_stack/templates/ollama/build.yaml b/llama_stack/templates/ollama/build.yaml index da33b8d5..4a702f6f 100644 --- a/llama_stack/templates/ollama/build.yaml +++ b/llama_stack/templates/ollama/build.yaml @@ -28,5 +28,5 @@ distribution_spec: - remote::tavily-search - inline::code-interpreter - inline::rag-runtime - - remote::model-context-protocol + container_image: "registry.access.redhat.com/ubi9" image_type: conda ``` Then run: ``` CONTAINER_BINARY=podman llama stack build --template ollama --image-type container --image-name registry.access.redhat.com/ubi9 Containerfile created successfully in /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile FROM registry.access.redhat.com/ubi9 WORKDIR /app RUN dnf -y update && dnf install -y iputils net-tools wget vim-minimal python3.11 python3.11-pip python3.11-wheel python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all ENV UV_SYSTEM_PYTHON=1 RUN pip install uv RUN uv pip install --no-cache ollama nltk opentelemetry-sdk aiosqlite matplotlib datasets sqlite-vec scipy chromadb-client psycopg2-binary numpy scikit-learn openai redis pandas tqdm blobfile sentencepiece aiohttp requests pillow pymongo transformers autoevals opentelemetry-exporter-otlp-proto-http pypdf chardet aiosqlite fastapi fire httpx uvicorn RUN uv pip install --no-cache llama-stack RUN pip uninstall -y uv ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "ollama"] # Allows running as non-root user RUN mkdir -p /.llama /.cache RUN chmod -R g+rw /app /.llama /.cache PWD: /Users/leseb/Documents/AI/llama-stack Containerfile: /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile + podman build --platform linux/arm64 -t distribution-ollama:0.1.4 -f /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile . --progress=plain STEP 1/11: FROM registry.access.redhat.com/ubi9 STEP 2/11: WORKDIR /app --> Using cache d73dafd4caddd75bc29242a9031258fea759dc571c5bb53a64b5e6d86b3b1335 --> d73dafd4cadd STEP 3/11: RUN dnf -y update && dnf install -y iputils net-tools wget vim-minimal python3.11 python3.11-pip python3.11-wheel python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all --> Using cache b74ad682db149771612a3ea1e4796e0760ab8a4e07c26ad672b46a86d38178c2 --> b74ad682db14 STEP 4/11: ENV UV_SYSTEM_PYTHON=1 --> Using cache 0812a05e6576506aa2fe646cbf239d0cb504cac30a50cb5cf4dc88e49039466d --> 0812a05e6576 STEP 5/11: RUN pip install uv --> Using cache a0ce1705f87e52f70f6eb34e66f67b68ebc7c1a073f4d2a664b189cfa89a4e88 --> a0ce1705f87e STEP 6/11: RUN uv pip install --no-cache ollama nltk opentelemetry-sdk aiosqlite matplotlib datasets sqlite-vec scipy chromadb-client psycopg2-binary numpy scikit-learn openai redis pandas tqdm blobfile sentencepiece aiohttp requests pillow pymongo transformers autoevals opentelemetry-exporter-otlp-proto-http pypdf chardet aiosqlite fastapi fire httpx uvicorn Using Python 3.11.9 environment at: /usr Resolved 107 packages in 1.78s Downloading kiwisolver (1.4MiB) Downloading aiohttp (1.6MiB) Downloading grpcio (5.4MiB) Downloading nltk (1.4MiB) Downloading transformers (9.5MiB) Downloading pydantic-core (1.7MiB) Downloading lxml (4.6MiB) Downloading psycopg2-binary (2.7MiB) Downloading scipy (33.8MiB) Downloading scikit-learn (12.0MiB) Downloading tokenizers (2.8MiB) Downloading fonttools (4.6MiB) Downloading pymongo (1.3MiB) Downloading rapidfuzz (1.4MiB) Downloading sentencepiece (1.2MiB) Downloading pyarrow (38.7MiB) Downloading matplotlib (8.1MiB) Downloading pycryptodomex (2.1MiB) Downloading pillow (4.2MiB) Downloading pandas (14.9MiB) Downloading numpy (13.6MiB) Building fire==0.7.0 Downloaded sentencepiece Downloaded kiwisolver Downloaded pymongo Downloaded rapidfuzz Downloaded nltk Downloaded aiohttp Built fire==0.7.0 Downloaded pydantic-core Downloaded pycryptodomex Downloaded psycopg2-binary Downloaded tokenizers Downloaded pillow Downloaded lxml Downloaded fonttools Downloaded grpcio Downloaded matplotlib Downloaded transformers Downloaded scikit-learn Downloaded numpy Downloaded pandas Downloaded scipy Downloaded pyarrow Prepared 107 packages in 3.03s Installed 107 packages in 62ms + aiohappyeyeballs==2.4.6 + aiohttp==3.11.13 + aiosignal==1.3.2 + aiosqlite==0.21.0 + annotated-types==0.7.0 + anyio==4.8.0 + attrs==25.1.0 + autoevals==0.0.120 + backoff==2.2.1 + blobfile==3.0.0 + braintrust-core==0.0.58 + certifi==2025.1.31 + chardet==5.2.0 + charset-normalizer==3.4.1 + chevron==0.14.0 + chromadb-client==0.6.3 + click==8.1.8 + contourpy==1.3.1 + cycler==0.12.1 + datasets==3.3.2 + deprecated==1.2.18 + dill==0.3.8 + distro==1.9.0 + dnspython==2.7.0 + fastapi==0.115.8 + filelock==3.17.0 + fire==0.7.0 + fonttools==4.56.0 + frozenlist==1.5.0 + fsspec==2024.12.0 + googleapis-common-protos==1.68.0 + grpcio==1.70.0 + h11==0.14.0 + httpcore==1.0.7 + httpx==0.28.1 + huggingface-hub==0.29.1 + idna==3.10 + importlib-metadata==8.5.0 + jiter==0.8.2 + joblib==1.4.2 + jsonschema==4.23.0 + jsonschema-specifications==2024.10.1 + kiwisolver==1.4.8 + levenshtein==0.26.1 + lxml==5.3.1 + matplotlib==3.10.0 + monotonic==1.6 + multidict==6.1.0 + multiprocess==0.70.16 + nltk==3.9.1 + numpy==1.26.4 + ollama==0.4.7 + openai==1.64.0 + opentelemetry-api==1.30.0 + opentelemetry-exporter-otlp-proto-common==1.30.0 + opentelemetry-exporter-otlp-proto-grpc==1.30.0 + opentelemetry-exporter-otlp-proto-http==1.30.0 + opentelemetry-proto==1.30.0 + opentelemetry-sdk==1.30.0 + opentelemetry-semantic-conventions==0.51b0 + orjson==3.10.15 + overrides==7.7.0 + packaging==24.2 + pandas==2.2.3 + pillow==11.1.0 + posthog==3.16.0 + propcache==0.3.0 + protobuf==5.29.3 + psycopg2-binary==2.9.10 + pyarrow==19.0.1 + pycryptodomex==3.21.0 + pydantic==2.10.6 + pydantic-core==2.27.2 + pymongo==4.11.1 + pyparsing==3.2.1 + pypdf==5.3.0 + python-dateutil==2.9.0.post0 + pytz==2025.1 + pyyaml==6.0.2 + rapidfuzz==3.12.1 + redis==5.2.1 + referencing==0.36.2 + regex==2024.11.6 + requests==2.32.3 + rpds-py==0.23.1 + safetensors==0.5.3 + scikit-learn==1.6.1 + scipy==1.15.2 + sentencepiece==0.2.0 + six==1.17.0 + sniffio==1.3.1 + sqlite-vec==0.1.6 + starlette==0.45.3 + tenacity==9.0.0 + termcolor==2.5.0 + threadpoolctl==3.5.0 + tokenizers==0.21.0 + tqdm==4.67.1 + transformers==4.49.0 + typing-extensions==4.12.2 + tzdata==2025.1 + urllib3==2.3.0 + uvicorn==0.34.0 + wrapt==1.17.2 + xxhash==3.5.0 + yarl==1.18.3 + zipp==3.21.0 --> 5b5b823605a1 STEP 7/11: RUN uv pip install --no-cache llama-stack Using Python 3.11.9 environment at: /usr Resolved 55 packages in 1.08s Downloading setuptools (1.2MiB) Downloading pygments (1.2MiB) Downloading llama-models (1.5MiB) Downloading tiktoken (1.1MiB) Downloaded tiktoken Downloaded llama-models Downloaded pygments Downloaded setuptools Prepared 15 packages in 402ms Installed 15 packages in 15ms + jinja2==3.1.5 + llama-models==0.1.4 + llama-stack==0.1.4 + llama-stack-client==0.1.4 + markdown-it-py==3.0.0 + markupsafe==3.0.2 + mdurl==0.1.2 + prompt-toolkit==3.0.50 + pyaml==25.1.0 + pygments==2.19.1 + python-dotenv==1.0.1 + rich==13.9.4 + setuptools==75.8.2 + tiktoken==0.9.0 + wcwidth==0.2.13 --> 38a037443807 STEP 8/11: RUN pip uninstall -y uv Found existing installation: uv 0.6.3 Uninstalling uv-0.6.3: Successfully uninstalled uv-0.6.3 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv --> 54f749dc5ece STEP 9/11: ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "ollama"] --> 481c138b1982 STEP 10/11: RUN mkdir -p /.llama /.cache --> 0fc174f014a8 STEP 11/11: RUN chmod -R g+rw /app /.llama /.cache COMMIT distribution-ollama:0.1.4 --> d41b4ab4b136 Successfully tagged localhost/distribution-ollama:0.1.4 d41b4ab4b1363bfbaf6239e6f313bcb37873ef4b5f2fd816a4ee55acf2ac54d3 + set +x Success! Build Successful! ``` UBI9 container successfully builds. Run the container: ``` podman run d41b4ab4b1363bfbaf6239e6f313bcb37873ef4b5f2fd816a4ee55acf2ac54d3 --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:213: Resolved 30 providers INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inner-inference => ollama INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: models => __routing_table__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inference => __autorouted__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inner-vector_io => sqlite-vec INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inner-safety => llama-guard INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: shields => __routing_table__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: safety => __autorouted__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: vector_dbs => __routing_table__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: vector_io => __autorouted__ INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inner-tool_runtime => brave-search INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215: inner-tool_runtime => tavily-search ``` [//]: # (## Documentation) --------- Signed-off-by: Sébastien Han <seb@redhat.com> |
||
---|---|---|
.github | ||
distributions | ||
docs | ||
llama_stack | ||
rfcs | ||
tests/client-sdk | ||
.gitignore | ||
.gitmodules | ||
.pre-commit-config.yaml | ||
.python-version | ||
.readthedocs.yaml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry |
---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
SambaNova | Hosted | ✅ | ||||
Cerebras | Hosted | ✅ | ||||
Fireworks | Hosted | ✅ | ✅ | ✅ | ||
AWS Bedrock | Hosted | ✅ | ✅ | |||
Together | Hosted | ✅ | ✅ | ✅ | ||
Groq | Hosted | ✅ | ||||
Ollama | Single Node | ✅ | ||||
TGI | Hosted and Single Node | ✅ | ||||
NVIDIA NIM | Hosted and Single Node | ✅ | ||||
Chroma | Single Node | ✅ | ||||
PG Vector | Single Node | ✅ | ||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | |||
vLLM | Hosted and Single Node | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
Meta Reference Quantized | llamastack/distribution-meta-reference-quantized-gpu | Guide |
SambaNova | llamastack/distribution-sambanova | Guide |
Cerebras | llamastack/distribution-cerebras | Guide |
Ollama | llamastack/distribution-ollama | Guide |
TGI | llamastack/distribution-tgi | Guide |
Together | llamastack/distribution-together | Guide |
Fireworks | llamastack/distribution-fireworks | Guide |
vLLM | llamastack/distribution-remote-vllm | Guide |
Installation
You have two ways to install this repository:
-
Install as a package: You can install the repository directly from PyPI by running the following command:
pip install llama-stack
-
Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:
git clone git@github.com:meta-llama/llama-stack.git cd llama-stack uv sync uv pip install -e .
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.