mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-05 05:35:22 +00:00
# What does this PR do? Simple approach to get some provider pages in the docs. Add or update description fields in the provider configuration class using Pydantic’s Field, ensuring these descriptions are clear and complete, as they will be used to auto-generate provider documentation via ./scripts/distro_codegen.py instead of editing the docs manually. Signed-off-by: Sébastien Han <seb@redhat.com>
40 lines
1.4 KiB
Python
40 lines
1.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from llama_stack.providers.datatypes import (
|
|
Api,
|
|
InlineProviderSpec,
|
|
ProviderSpec,
|
|
)
|
|
from llama_stack.providers.utils.kvstore import kvstore_dependencies
|
|
|
|
|
|
def available_providers() -> list[ProviderSpec]:
|
|
return [
|
|
InlineProviderSpec(
|
|
api=Api.agents,
|
|
provider_type="inline::meta-reference",
|
|
pip_packages=[
|
|
"matplotlib",
|
|
"pillow",
|
|
"pandas",
|
|
"scikit-learn",
|
|
]
|
|
+ kvstore_dependencies(), # TODO make this dynamic based on the kvstore config
|
|
module="llama_stack.providers.inline.agents.meta_reference",
|
|
config_class="llama_stack.providers.inline.agents.meta_reference.MetaReferenceAgentsImplConfig",
|
|
api_dependencies=[
|
|
Api.inference,
|
|
Api.safety,
|
|
Api.vector_io,
|
|
Api.vector_dbs,
|
|
Api.tool_runtime,
|
|
Api.tool_groups,
|
|
],
|
|
description="Meta's reference implementation of an agent system that can use tools, access vector databases, and perform complex reasoning tasks.",
|
|
),
|
|
]
|