mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? The current default system prompt for llama3.2 tends to overindex on tool calling and doesn't work well when the prompt does not require tool calling. This PR adds an option to override the default system prompt, and organizes tool-related configs into a new config object. - [ ] Addresses issue (#issue) ## Test Plan python -m unittest llama_stack.providers.tests.inference.test_prompt_adapter ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests. --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/937). * #938 * __->__ #937
194 lines
6.4 KiB
Python
194 lines
6.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from cerebras.cloud.sdk import AsyncCerebras
|
|
from llama_models.datatypes import CoreModelId
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import TopKSamplingStrategy
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import CerebrasImplConfig
|
|
|
|
model_aliases = [
|
|
build_model_alias(
|
|
"llama3.1-8b",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama-3.3-70b",
|
|
CoreModelId.llama3_3_70b_instruct.value,
|
|
),
|
|
]
|
|
|
|
|
|
class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: CerebrasImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(
|
|
self,
|
|
model_aliases=model_aliases,
|
|
)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
self.client = AsyncCerebras(
|
|
base_url=self.config.base_url,
|
|
api_key=self.config.api_key.get_secret_value(),
|
|
)
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(
|
|
request,
|
|
)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
|
if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
|
raise ValueError("`top_k` not supported by Cerebras")
|
|
|
|
prompt = ""
|
|
if isinstance(request, ChatCompletionRequest):
|
|
prompt = await chat_completion_request_to_prompt(
|
|
request, self.get_llama_model(request.model), self.formatter
|
|
)
|
|
elif isinstance(request, CompletionRequest):
|
|
prompt = await completion_request_to_prompt(request, self.formatter)
|
|
else:
|
|
raise ValueError(f"Unknown request type {type(request)}")
|
|
|
|
return {
|
|
"model": request.model,
|
|
"prompt": prompt,
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|