llama-stack-mirror/llama_stack/providers/remote/inference/together/together.py

336 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from openai import NOT_GIVEN, AsyncOpenAI
from together import AsyncTogether
from together.constants import BASE_URL
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
ResponseFormatType,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
from llama_stack.apis.models import Model, ModelType
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import TogetherImplConfig
from .models import EMBEDDING_MODEL_ENTRIES, MODEL_ENTRIES
logger = get_logger(name=__name__, category="inference::together")
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: TogetherImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
self.config = config
self._model_cache: dict[str, Model] = {}
def get_api_key(self):
return self.config.api_key.get_secret_value()
def get_base_url(self):
return BASE_URL
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_client(self) -> AsyncTogether:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return AsyncTogether(api_key=together_api_key)
def _get_openai_client(self) -> AsyncOpenAI:
together_client = self._get_client().client
return AsyncOpenAI(
base_url=together_client.base_url,
api_key=together_client.api_key,
)
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
client = self._get_client()
r = await client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
client = self._get_client()
stream = await client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
def _build_options(
self,
sampling_params: SamplingParams | None,
logprobs: LogProbConfig | None,
fmt: ResponseFormat,
) -> dict:
options = get_sampling_options(sampling_params)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
raise NotImplementedError("Grammar response format not supported yet")
else:
raise ValueError(f"Unknown response format {fmt.type}")
if logprobs and logprobs.top_k:
if logprobs.top_k != 1:
raise ValueError(
f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided",
)
options["logprobs"] = 1
return options
async def chat_completion(
self,
model_id: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
client = self._get_client()
if "messages" in params:
r = await client.chat.completions.create(**params)
else:
r = await client.completions.create(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
client = self._get_client()
if "messages" in params:
stream = await client.chat.completions.create(**params)
else:
stream = await client.completions.create(**params)
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
input_dict = {}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
if media_present or not llama_model:
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
else:
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
else:
assert not media_present, "Together does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
params = {
"model": request.model,
**input_dict,
"stream": request.stream,
**self._build_options(request.sampling_params, request.logprobs, request.response_format),
}
logger.debug(f"params to together: {params}")
return params
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
assert all(not content_has_media(content) for content in contents), (
"Together does not support media for embeddings"
)
client = self._get_client()
r = await client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)
async def list_models(self) -> list[Model] | None:
self._model_cache = {}
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
for m in await self._get_client().models.list():
if m.type == "embedding":
if m.id not in EMBEDDING_MODEL_ENTRIES:
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
continue
self._model_cache[m.id] = Model(
provider_id=self.__provider_id__,
provider_resource_id=EMBEDDING_MODEL_ENTRIES[m.id].provider_model_id,
identifier=m.id,
model_type=ModelType.embedding,
metadata=EMBEDDING_MODEL_ENTRIES[m.id].metadata,
)
else:
self._model_cache[m.id] = Model(
provider_id=self.__provider_id__,
provider_resource_id=m.id,
identifier=m.id,
model_type=ModelType.llm,
)
return self._model_cache.values()
async def should_refresh_models(self) -> bool:
return True
async def check_model_availability(self, model):
return model in self._model_cache
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""
Together's OpenAI-compatible embeddings endpoint is not compatible with
the standard OpenAI embeddings endpoint.
The endpoint -
- does not return usage information
- does not support user param, returns 400 Unrecognized request arguments supplied: user
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
- does not support encoding_format param, always returns floats, never base64
"""
# Together support ticket #13332 -> will not fix
if user is not None:
raise ValueError("Together's embeddings endpoint does not support user param.")
# Together support ticket #13333 -> escalated
if dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
# Together support ticket #13331 -> will not fix, compute client side
if encoding_format not in (None, NOT_GIVEN, "float"):
raise ValueError("Together's embeddings endpoint only supports encoding_format='float'.")
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
)
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
# Together support ticket #13330 -> escalated
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
if not hasattr(response, "usage") or response.usage is None:
logger.warning(
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
)
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
return response