mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? 1) Implement `unregister_dataset(dataset_id)` API in both llama stack routing table and providers: It removes {dataset_id -> Dataset} mapping from routing table and removes the dataset_id references in provider as well (ex. for huggingface, we use a KV store to store the dataset id => dataset. we delete it during unregistering as well) 2) expose the datasets/unregister_dataset api endpoint ## Test Plan **Unit test:** ` pytest llama_stack/providers/tests/datasetio/test_datasetio.py -m "huggingface" -v -s --tb=short --disable-warnings ` **Test on endpoint:** tested llama stack using an ollama distribution template: 1) start an ollama server 2) Start a llama stack server with the default ollama distribution config + dataset/datasetsio APIs + datasetio provider ``` ---- .../ollama-run.yaml ... apis: - agents - inference - memory - safety - telemetry - datasetio - datasets providers: datasetio: - provider_id: localfs provider_type: inline::localfs config: {} ... ``` saw that the new API showed up in startup script ``` Serving API datasets GET /alpha/datasets/get GET /alpha/datasets/list POST /alpha/datasets/register POST /alpha/datasets/unregister ``` 3) query `/alpha/datasets/unregister` through curl (since we have not implemented unregister api in llama stack client) ``` (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register --dataset-id sixian --url https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst --schema {} (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩ │ sixian │ localfs │ {} │ dataset │ └────────────┴─────────────┴──────────┴─────────┘ (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register --dataset-id sixian2 --url https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst --schema {} (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩ │ sixian │ localfs │ {} │ dataset │ │ sixian2 │ localfs │ {} │ dataset │ └────────────┴─────────────┴──────────┴─────────┘ (base) sxyi@sxyi-mbp llama-stack % curl http://localhost:5001/alpha/datasets/unregister \ -H "Content-Type: application/json" \ -d '{"dataset_id": "sixian"}' null% (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩ │ sixian2 │ localfs │ {} │ dataset │ └────────────┴─────────────┴──────────┴─────────┘ (base) sxyi@sxyi-mbp llama-stack % curl http://localhost:5001/alpha/datasets/unregister \ -H "Content-Type: application/json" \ -d '{"dataset_id": "sixian2"}' null% (base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list ``` ## Sources ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import Optional
|
|
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
|
|
|
|
import datasets as hf_datasets
|
|
|
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
|
|
|
from .config import HuggingfaceDatasetIOConfig
|
|
|
|
DATASETS_PREFIX = "datasets:"
|
|
|
|
|
|
def load_hf_dataset(dataset_def: Dataset):
|
|
if dataset_def.metadata.get("path", None):
|
|
return hf_datasets.load_dataset(**dataset_def.metadata)
|
|
|
|
df = get_dataframe_from_url(dataset_def.url)
|
|
|
|
if df is None:
|
|
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
|
|
|
|
dataset = hf_datasets.Dataset.from_pandas(df)
|
|
return dataset
|
|
|
|
|
|
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
|
|
self.config = config
|
|
# local registry for keeping track of datasets within the provider
|
|
self.dataset_infos = {}
|
|
self.kvstore = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
|
# Load existing datasets from kvstore
|
|
start_key = DATASETS_PREFIX
|
|
end_key = f"{DATASETS_PREFIX}\xff"
|
|
stored_datasets = await self.kvstore.range(start_key, end_key)
|
|
|
|
for dataset in stored_datasets:
|
|
dataset = Dataset.model_validate_json(dataset)
|
|
self.dataset_infos[dataset.identifier] = dataset
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_dataset(
|
|
self,
|
|
dataset_def: Dataset,
|
|
) -> None:
|
|
# Store in kvstore
|
|
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
|
|
await self.kvstore.set(
|
|
key=key,
|
|
value=dataset_def.json(),
|
|
)
|
|
self.dataset_infos[dataset_def.identifier] = dataset_def
|
|
|
|
async def unregister_dataset(self, dataset_id: str) -> None:
|
|
key = f"{DATASETS_PREFIX}{dataset_id}"
|
|
await self.kvstore.delete(key=key)
|
|
del self.dataset_infos[dataset_id]
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
dataset_def = self.dataset_infos[dataset_id]
|
|
loaded_dataset = load_hf_dataset(dataset_def)
|
|
|
|
if page_token and not page_token.isnumeric():
|
|
raise ValueError("Invalid page_token")
|
|
|
|
if page_token is None or len(page_token) == 0:
|
|
next_page_token = 0
|
|
else:
|
|
next_page_token = int(page_token)
|
|
|
|
start = next_page_token
|
|
if rows_in_page == -1:
|
|
end = len(loaded_dataset)
|
|
else:
|
|
end = min(start + rows_in_page, len(loaded_dataset))
|
|
|
|
rows = [loaded_dataset[i] for i in range(start, end)]
|
|
|
|
return PaginatedRowsResult(
|
|
rows=rows,
|
|
total_count=len(rows),
|
|
next_page_token=str(end),
|
|
)
|