llama-stack-mirror/llama_stack/cli/model/safety_models.py
2024-10-02 08:43:12 -07:00

52 lines
1.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from pydantic import BaseModel, ConfigDict, Field
from llama_models.datatypes import * # noqa: F403
from llama_models.sku_list import LlamaDownloadInfo
class PromptGuardModel(BaseModel):
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
model_id: str = "Prompt-Guard-86M"
description: str = (
"Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
)
is_featured: bool = False
huggingface_repo: str = "meta-llama/Prompt-Guard-86M"
max_seq_length: int = 2048
is_instruct_model: bool = False
quantization_format: CheckpointQuantizationFormat = (
CheckpointQuantizationFormat.bf16
)
arch_args: Dict[str, Any] = Field(default_factory=dict)
recommended_sampling_params: Optional[SamplingParams] = None
def descriptor(self) -> str:
return self.model_id
model_config = ConfigDict(protected_namespaces=())
def prompt_guard_model_sku():
return PromptGuardModel()
def prompt_guard_download_info():
return LlamaDownloadInfo(
folder="Prompt-Guard",
files=[
"model.safetensors",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
],
pth_size=1,
)