llama-stack-mirror/llama_stack/apis/evals/client.py
2024-10-15 10:14:35 -07:00

175 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
import fire
import httpx
from termcolor import cprint
from .evals import * # noqa: F403
import base64
import mimetypes
import os
from ..datasets.client import DatasetsClient
def data_url_from_file(file_path: str) -> str:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
with open(file_path, "rb") as file:
file_content = file.read()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_path)
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url
class EvaluationClient(Evals):
def __init__(self, base_url: str):
self.base_url = base_url
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
eval_task_config: EvaluateTaskConfig,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_eval_task",
json={
"eval_task_config": json.loads(eval_task_config.json()),
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_scorer(
self,
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_scorer",
json={
"dataset_config": json.loads(dataset_config.json()),
"eval_scoring_config": json.loads(eval_scoring_config.json()),
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_main(host: str, port: int, eval_dataset_path: str = ""):
client = EvaluationClient(f"http://{host}:{port}")
dataset_client = DatasetsClient(f"http://{host}:{port}")
# Full Eval Task
# 1. register custom dataset
response = await dataset_client.create_dataset(
dataset_def=CustomDatasetDef(
identifier="mmlu-simple-eval-en",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
)
cprint(f"datasets/create: {response}", "cyan")
# # 2. run evals on the registered dataset
eval_task_config = EvaluateTaskConfig(
dataset_config=EvaluateDatasetConfig(
dataset_identifier="mmlu-simple-eval-en",
row_limit=3,
),
processor_config=EvaluateProcessorConfig(
processor_identifier="mmlu",
),
generation_config=EvaluateModelGenerationConfig(
model="Llama3.1-8B-Instruct",
),
scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
EvaluateSingleScorerConfig(scorer_name="random"),
]
),
)
response = await client.run_evals(
eval_task_config=eval_task_config,
)
for k, v in response.eval_result.metrics.items():
cprint(f"{k}: {v}", "green")
# Scoring Task
# # 1. register huggingface dataset
# response = await dataset_client.create_dataset(
# dataset_def=HuggingfaceDatasetDef(
# identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
# dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# rename_columns_map={
# "output_parsed_answer": "generated_answer",
# "input_correct_responses": "expected_answer",
# },
# kwargs={"split": "latest"},
# )
# )
# cprint(response, "cyan")
# # register custom dataset from file path
# response = await dataset_client.create_dataset(
# dataset_def=CustomDatasetDef(
# identifier="rag-evals",
# url=data_url_from_file(eval_dataset_path),
# rename_columns_map={
# "query": "input_query",
# },
# )
# )
# cprint(response, "cyan")
# # 2. run evals on the registered dataset
# response = await client.run_scorer(
# dataset_config=EvaluateDatasetConfig(
# dataset_identifier="rag-evals",
# # dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
# row_limit=10,
# ),
# eval_scoring_config=EvaluateScoringConfig(
# scorer_config_list=[
# EvaluateSingleScorerConfig(scorer_name="accuracy"),
# EvaluateSingleScorerConfig(
# scorer_name="braintrust::answer-correctness"
# ),
# ]
# ),
# )
# for k, v in response.eval_result.metrics.items():
# cprint(f"{k}: {v}", "green")
def main(host: str, port: int, eval_dataset_path: str = ""):
asyncio.run(run_main(host, port, eval_dataset_path))
if __name__ == "__main__":
fire.Fire(main)