mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
82 lines
2.7 KiB
Python
82 lines
2.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from llama_models.datatypes import * # noqa: F403
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from llama_stack.apis.inference import * # noqa: F401, F403
|
|
from pydantic import BaseModel, Field, field_validator
|
|
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
|
|
class MetaReferenceInferenceConfig(BaseModel):
|
|
model: str = Field(
|
|
default="Llama3.2-3B-Instruct",
|
|
description="Model descriptor from `llama model list`",
|
|
)
|
|
torch_seed: Optional[int] = None
|
|
max_seq_len: int = 4096
|
|
max_batch_size: int = 1
|
|
|
|
# when this is False, we assume that the distributed process group is setup by someone
|
|
# outside of this code (e.g., when run inside `torchrun`). that is useful for clients
|
|
# (including our testing code) who might be using llama-stack as a library.
|
|
create_distributed_process_group: bool = True
|
|
|
|
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
|
|
# can override by specifying the directory explicitly
|
|
checkpoint_dir: Optional[str] = None
|
|
|
|
@field_validator("model")
|
|
@classmethod
|
|
def validate_model(cls, model: str) -> str:
|
|
permitted_models = supported_inference_models()
|
|
descriptors = [m.descriptor() for m in permitted_models]
|
|
repos = [m.huggingface_repo for m in permitted_models]
|
|
if model not in (descriptors + repos):
|
|
model_list = "\n\t".join(repos)
|
|
raise ValueError(
|
|
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def model_parallel_size(self) -> int:
|
|
resolved = resolve_model(self.model)
|
|
return resolved.pth_file_count
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
return {
|
|
"model": model,
|
|
"max_seq_len": 4096,
|
|
"checkpoint_dir": checkpoint_dir,
|
|
}
|
|
|
|
|
|
class MetaReferenceQuantizedInferenceConfig(MetaReferenceInferenceConfig):
|
|
quantization: QuantizationConfig
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
config = super().sample_run_config(model, checkpoint_dir, **kwargs)
|
|
config["quantization"] = {
|
|
"type": "fp8",
|
|
}
|
|
return config
|