llama-stack-mirror/llama_stack
Charlie Doern ce48d47543 feat: DistributedJobScheduler
rather than handling multi-GPU training within a recipe, distributed training should be one of our scheduler offerings. Introduce the DistributedJobScheduler which kicks off a `finetune_handler.py` script using torchrun. This handler processes the training args via argparse
and calls the right recipe as `post_training.py` used to do. Torchrun takes care of env variables like world_size, local_rank, etc.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-06-12 16:05:45 -04:00
..
apis fix: set appropriate defaults for params (#2434) 2025-06-11 17:30:34 -07:00
cli fix: resolve template name to config path in llama stack run (#2361) 2025-06-03 14:39:12 -07:00
distribution ci: fix external provider test (#2438) 2025-06-12 16:14:32 +02:00
models chore: remove usage of load_tiktoken_bpe (#2276) 2025-06-02 07:33:37 -07:00
providers feat: DistributedJobScheduler 2025-06-12 16:05:45 -04:00
strong_typing chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00
templates feat: add finetune_multi_device recipe with fsdp support 2025-06-12 13:33:33 -04:00
ui build: Bump version to 0.2.10 2025-06-05 22:56:39 +00:00
__init__.py export LibraryClient 2024-12-13 12:08:00 -08:00
env.py refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401) 2025-03-04 14:53:47 -08:00
log.py ci: fix external provider test (#2438) 2025-06-12 16:14:32 +02:00
schema_utils.py chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00