mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
# What does this PR do? Initial implementation for `Conversations` and `ConversationItems` using `AuthorizedSqlStore` with endpoints to: - CREATE - UPDATE - GET/RETRIEVE/LIST - DELETE Set `level=LLAMA_STACK_API_V1`. NOTE: This does not currently incorporate changes for Responses, that'll be done in a subsequent PR. Closes https://github.com/llamastack/llama-stack/issues/3235 ## Test Plan - Unit tests - Integration tests Also comparison of [OpenAPI spec for OpenAI API](https://github.com/openai/openai-openapi/tree/manual_spec) ```bash oasdiff breaking --fail-on ERR docs/static/llama-stack-spec.yaml https://raw.githubusercontent.com/openai/openai-openapi/refs/heads/manual_spec/openapi.yaml --strip-prefix-base "/v1/openai/v1" \ --match-path '(^/v1/openai/v1/conversations.*|^/conversations.*)' ``` Note I still have some uncertainty about this, I borrowed this info from @cdoern on https://github.com/llamastack/llama-stack/pull/3514 but need to spend more time to confirm it's working, at the moment it suggests it does. UPDATE on `oasdiff`, I investigated the OpenAI spec further and it looks like currently the spec does not list Conversations, so that analysis is useless. Noting for future reference. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
132 lines
4.5 KiB
Python
132 lines
4.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
from openai.types.conversations.conversation import Conversation as OpenAIConversation
|
|
from openai.types.conversations.conversation_item import ConversationItem as OpenAIConversationItem
|
|
from pydantic import TypeAdapter
|
|
|
|
from llama_stack.apis.agents.openai_responses import (
|
|
OpenAIResponseInputMessageContentText,
|
|
OpenAIResponseMessage,
|
|
)
|
|
from llama_stack.core.conversations.conversations import (
|
|
ConversationServiceConfig,
|
|
ConversationServiceImpl,
|
|
)
|
|
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
|
|
|
|
|
|
@pytest.fixture
|
|
async def service():
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
db_path = Path(tmpdir) / "test_conversations.db"
|
|
|
|
config = ConversationServiceConfig(conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=[])
|
|
service = ConversationServiceImpl(config, {})
|
|
await service.initialize()
|
|
yield service
|
|
|
|
|
|
async def test_conversation_lifecycle(service):
|
|
conversation = await service.create_conversation(metadata={"test": "data"})
|
|
|
|
assert conversation.id.startswith("conv_")
|
|
assert conversation.metadata == {"test": "data"}
|
|
|
|
retrieved = await service.get_conversation(conversation.id)
|
|
assert retrieved.id == conversation.id
|
|
|
|
deleted = await service.openai_delete_conversation(conversation.id)
|
|
assert deleted.id == conversation.id
|
|
|
|
|
|
async def test_conversation_items(service):
|
|
conversation = await service.create_conversation()
|
|
|
|
items = [
|
|
OpenAIResponseMessage(
|
|
type="message",
|
|
role="user",
|
|
content=[OpenAIResponseInputMessageContentText(type="input_text", text="Hello")],
|
|
id="msg_test123",
|
|
status="completed",
|
|
)
|
|
]
|
|
item_list = await service.add_items(conversation.id, items)
|
|
|
|
assert len(item_list.data) == 1
|
|
assert item_list.data[0].id == "msg_test123"
|
|
|
|
items = await service.list(conversation.id)
|
|
assert len(items.data) == 1
|
|
|
|
|
|
async def test_invalid_conversation_id(service):
|
|
with pytest.raises(ValueError, match="Expected an ID that begins with 'conv_'"):
|
|
await service._get_validated_conversation("invalid_id")
|
|
|
|
|
|
async def test_empty_parameter_validation(service):
|
|
with pytest.raises(ValueError, match="Expected a non-empty value"):
|
|
await service.retrieve("", "item_123")
|
|
|
|
|
|
async def test_openai_type_compatibility(service):
|
|
conversation = await service.create_conversation(metadata={"test": "value"})
|
|
|
|
conversation_dict = conversation.model_dump()
|
|
openai_conversation = OpenAIConversation.model_validate(conversation_dict)
|
|
|
|
for attr in ["id", "object", "created_at", "metadata"]:
|
|
assert getattr(openai_conversation, attr) == getattr(conversation, attr)
|
|
|
|
items = [
|
|
OpenAIResponseMessage(
|
|
type="message",
|
|
role="user",
|
|
content=[OpenAIResponseInputMessageContentText(type="input_text", text="Hello")],
|
|
id="msg_test456",
|
|
status="completed",
|
|
)
|
|
]
|
|
item_list = await service.add_items(conversation.id, items)
|
|
|
|
for attr in ["object", "data", "first_id", "last_id", "has_more"]:
|
|
assert hasattr(item_list, attr)
|
|
assert item_list.object == "list"
|
|
|
|
items = await service.list(conversation.id)
|
|
item = await service.retrieve(conversation.id, items.data[0].id)
|
|
item_dict = item.model_dump()
|
|
|
|
openai_item_adapter = TypeAdapter(OpenAIConversationItem)
|
|
openai_item_adapter.validate_python(item_dict)
|
|
|
|
|
|
async def test_policy_configuration():
|
|
from llama_stack.core.access_control.datatypes import Action, Scope
|
|
from llama_stack.core.datatypes import AccessRule
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
db_path = Path(tmpdir) / "test_conversations_policy.db"
|
|
|
|
restrictive_policy = [
|
|
AccessRule(forbid=Scope(principal="test_user", actions=[Action.CREATE, Action.READ], resource="*"))
|
|
]
|
|
|
|
config = ConversationServiceConfig(
|
|
conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=restrictive_policy
|
|
)
|
|
service = ConversationServiceImpl(config, {})
|
|
await service.initialize()
|
|
|
|
assert service.policy == restrictive_policy
|
|
assert len(service.policy) == 1
|
|
assert service.policy[0].forbid is not None
|