# What does this PR do? ollama's CLI supports running models via commands such as 'ollama run llama3.2' this syntax does not work with the INFERENCE_MODEL llamastack var as currently specifying a tag such as 'latest' is required this commit will check to see if the 'latest' model is available and use that model if a user passes a model name without a tag but the 'latest' is available in ollama ## Test Plan Behavior pre-code change ```bash $ INFERENCE_MODEL=llama3.2 llama stack build --template ollama --image-type venv --run ... INFO 2025-04-08 13:42:42,842 llama_stack.providers.remote.inference.ollama.ollama:80 inference: checking connectivity to Ollama at `http://beanlab1.bss.redhat.com:11434`... Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/server/server.py", line 502, in <module> main() File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/server/server.py", line 401, in main impls = asyncio.run(construct_stack(config)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/asyncio/runners.py", line 195, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/asyncio/base_events.py", line 691, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/stack.py", line 222, in construct_stack await register_resources(run_config, impls) File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/stack.py", line 99, in register_resources await method(**obj.model_dump()) File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper result = await method(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 294, in register_model registered_model = await self.register_object(model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 228, in register_object registered_obj = await register_object_with_provider(obj, p) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 77, in register_object_with_provider return await p.register_model(obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper result = await method(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/nathan/ai/llama-stack/repos/llama-stack/llama_stack/providers/remote/inference/ollama/ollama.py", line 315, in register_model raise ValueError( ValueError: Model 'llama3.2' is not available in Ollama. Available models: llama3.2:latest ++ error_handler 108 ++ echo 'Error occurred in script at line: 108' Error occurred in script at line: 108 ++ exit 1 ``` Behavior post-code change ```bash $ INFERENCE_MODEL=llama3.2 llama stack build --template ollama --image-type venv --run ... INFO 2025-04-08 13:58:17,365 llama_stack.providers.remote.inference.ollama.ollama:80 inference: checking connectivity to Ollama at `http://beanlab1.bss.redhat.com:11434`... WARNING 2025-04-08 13:58:18,190 llama_stack.providers.remote.inference.ollama.ollama:317 inference: Imprecise provider resource id was used but 'latest' is available in Ollama - using 'llama3.2:latest' INFO 2025-04-08 13:58:18,191 llama_stack.providers.remote.inference.ollama.ollama:308 inference: Pulling embedding model `all-minilm:latest` if necessary... INFO 2025-04-08 13:58:18,799 __main__:478 server: Listening on ['::', '0.0.0.0']:8321 INFO: Started server process [28378] INFO: Waiting for application startup. INFO 2025-04-08 13:58:18,803 __main__:148 server: Starting up INFO: Application startup complete. INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) ... ``` ## Documentation Did not document this anywhere but happy to do so if there is an appropriate place Signed-off-by: Nathan Weinberg <nweinber@redhat.com> |
||
---|---|---|
.github | ||
docs | ||
llama_stack | ||
rfcs | ||
scripts | ||
tests | ||
.gitignore | ||
.pre-commit-config.yaml | ||
.readthedocs.yaml | ||
CHANGELOG.md | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook
✨🎉 Llama 4 Support 🎉✨
We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.
👋 Click here to see how to run Llama 4 models on Llama Stack
Note you need 8xH100 GPU-host to run these models
pip install -U llama_stack
MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
CLI
# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"
ChatCompletionResponse(
completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
logprobs=None,
metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)
Python SDK
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:8321")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"
print(f"User> {prompt}")
response = client.inference.chat_completion(
model_id=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
print(f"Assistant> {response.completion_message.content}")
As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!
Overview
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry |
---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
SambaNova | Hosted | ✅ | ||||
Cerebras | Hosted | ✅ | ||||
Fireworks | Hosted | ✅ | ✅ | ✅ | ||
AWS Bedrock | Hosted | ✅ | ✅ | |||
Together | Hosted | ✅ | ✅ | ✅ | ||
Groq | Hosted | ✅ | ||||
Ollama | Single Node | ✅ | ||||
TGI | Hosted and Single Node | ✅ | ||||
NVIDIA NIM | Hosted and Single Node | ✅ | ||||
Chroma | Single Node | ✅ | ||||
PG Vector | Single Node | ✅ | ||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | |||
vLLM | Hosted and Single Node | ✅ | ||||
OpenAI | Hosted | ✅ | ||||
Anthropic | Hosted | ✅ | ||||
Gemini | Hosted | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
Meta Reference Quantized | llamastack/distribution-meta-reference-quantized-gpu | Guide |
SambaNova | llamastack/distribution-sambanova | Guide |
Cerebras | llamastack/distribution-cerebras | Guide |
Ollama | llamastack/distribution-ollama | Guide |
TGI | llamastack/distribution-tgi | Guide |
Together | llamastack/distribution-together | Guide |
Fireworks | llamastack/distribution-fireworks | Guide |
vLLM | llamastack/distribution-remote-vllm | Guide |
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.