llama-stack-mirror/llama_stack/providers/remote/inference/lmstudio/_client.py
2025-04-25 14:47:57 -04:00

493 lines
19 KiB
Python

import asyncio
from typing import AsyncIterator, AsyncGenerator, List, Literal, Optional, Union
import lmstudio as lms
import json
import re
import logging
from llama_stack.apis.common.content_types import InterleavedContent, TextDelta
from llama_stack.apis.inference.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionResponse,
CompletionResponseStreamChunk,
JsonSchemaResponseFormat,
Message,
ToolConfig,
ToolDefinition,
)
from llama_stack.models.llama.datatypes import (
GreedySamplingStrategy,
SamplingParams,
StopReason,
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_message_to_openai_dict_new,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_tooldef_to_openai_tool,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
content_has_media,
interleaved_content_as_str,
)
from openai import AsyncOpenAI as OpenAI
LlmPredictionStopReason = Literal[
"userStopped",
"modelUnloaded",
"failed",
"eosFound",
"stopStringFound",
"toolCalls",
"maxPredictedTokensReached",
"contextLengthReached",
]
class LMStudioClient:
def __init__(self, url: str) -> None:
self.url = url
self.sdk_client = lms.Client(self.url)
self.openai_client = OpenAI(base_url=f"http://{url}/v1", api_key="lmstudio")
# Standard error handling helper methods
def _log_error(self, error, context=""):
"""Centralized error logging method"""
logging.warning(f"Error in LMStudio {context}: {error}")
async def _create_fallback_chat_stream(self, error_message="I encountered an error processing your request."):
"""Create a standardized fallback stream for chat completions"""
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta=TextDelta(text=""),
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=TextDelta(text=error_message),
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=""),
)
)
async def _create_fallback_completion_stream(self, error_message="Error processing response"):
"""Create a standardized fallback stream for text completions"""
yield CompletionResponseStreamChunk(
delta=error_message,
)
def _create_fallback_chat_response(self, error_message="I encountered an error processing your request."):
"""Create a standardized fallback response for chat completions"""
return ChatCompletionResponse(
message=Message(
role="assistant",
content=error_message,
),
stop_reason=StopReason.end_of_message,
)
def _create_fallback_completion_response(self, error_message="Error processing response"):
"""Create a standardized fallback response for text completions"""
return CompletionResponse(
content=error_message,
stop_reason=StopReason.end_of_message,
)
def _handle_json_extraction(self, content, context="JSON extraction"):
"""Standardized method to extract valid JSON from potentially malformed content"""
try:
json_content = json.loads(content)
return json.dumps(json_content) # Re-serialize to ensure valid JSON
except json.JSONDecodeError as e:
self._log_error(e, f"{context} - Attempting to extract valid JSON")
json_patterns = [
r'(\{.*\})', # Match anything between curly braces
r'(\[.*\])', # Match anything between square brackets
r'```json\s*([\s\S]*?)\s*```', # Match content in JSON code blocks
r'```\s*([\s\S]*?)\s*```', # Match content in any code blocks
]
for pattern in json_patterns:
json_match = re.search(pattern, content, re.DOTALL)
if json_match:
valid_json = json_match.group(1)
try:
json_content = json.loads(valid_json)
return json.dumps(json_content) # Re-serialize to ensure valid JSON
except json.JSONDecodeError:
continue # Try the next pattern
# If we couldn't extract valid JSON, log a warning
self._log_error("Failed to extract valid JSON", context)
return None
async def check_if_model_present_in_lmstudio(self, provider_model_id):
models = await asyncio.to_thread(self.sdk_client.list_downloaded_models)
model_ids = [m.model_key for m in models]
if provider_model_id in model_ids:
return True
model_ids = [id.split("/")[-1] for id in model_ids]
if provider_model_id in model_ids:
return True
return False
async def get_embedding_model(self, provider_model_id: str):
model = await asyncio.to_thread(
self.sdk_client.embedding.model, provider_model_id
)
return model
async def embed(
self, embedding_model: lms.EmbeddingModel, contents: Union[str, List[str]]
):
embeddings = await asyncio.to_thread(embedding_model.embed, contents)
return embeddings
async def get_llm(self, provider_model_id: str) -> lms.LLM:
model = await asyncio.to_thread(self.sdk_client.llm.model, provider_model_id)
return model
async def _llm_respond_non_tools(
self,
llm: lms.LLM,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
json_schema: Optional[JsonSchemaResponseFormat] = None,
stream: Optional[bool] = False,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
chat = self._convert_message_list_to_lmstudio_chat(messages)
config = self._get_completion_config_from_params(sampling_params)
if stream:
async def stream_generator():
prediction_stream = await asyncio.to_thread(
llm.respond_stream,
history=chat,
config=config,
response_format=json_schema,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta=TextDelta(text=""),
)
)
async for chunk in self._async_iterate(prediction_stream):
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=TextDelta(text=chunk.content),
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=""),
)
)
return stream_generator()
else:
response = await asyncio.to_thread(
llm.respond,
history=chat,
config=config,
response_format=json_schema,
)
return self._convert_prediction_to_chat_response(response)
async def _llm_respond_with_tools(
self,
llm: lms.LLM,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
json_schema: Optional[JsonSchemaResponseFormat] = None,
stream: Optional[bool] = False,
tools: Optional[List[ToolDefinition]] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
try:
model_key = llm.get_info().model_key
request = ChatCompletionRequest(
model=model_key,
messages=messages,
sampling_params=sampling_params,
response_format=json_schema,
tools=tools,
tool_config=tool_config,
stream=stream,
)
rest_request = await self._convert_request_to_rest_call(request)
if stream:
try:
stream = await self.openai_client.chat.completions.create(**rest_request)
return convert_openai_chat_completion_stream(
stream, enable_incremental_tool_calls=True
)
except Exception as e:
self._log_error(e, "streaming tool calling")
return self._create_fallback_chat_stream()
try:
response = await self.openai_client.chat.completions.create(**rest_request)
if response:
result = convert_openai_chat_completion_choice(response.choices[0])
return result
else:
# Handle empty response
self._log_error("Empty response from OpenAI API", "chat completion")
return self._create_fallback_chat_response()
except Exception as e:
self._log_error(e, "non-streaming tool calling")
return self._create_fallback_chat_response()
except Exception as e:
self._log_error(e, "_llm_respond_with_tools")
# Return a fallback response
if stream:
return self._create_fallback_chat_stream()
else:
return self._create_fallback_chat_response()
async def llm_respond(
self,
llm: lms.LLM,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
json_schema: Optional[JsonSchemaResponseFormat] = None,
stream: Optional[bool] = False,
tools: Optional[List[ToolDefinition]] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
if tools is None or len(tools) == 0:
return await self._llm_respond_non_tools(
llm=llm,
messages=messages,
sampling_params=sampling_params,
json_schema=json_schema,
stream=stream,
)
else:
return await self._llm_respond_with_tools(
llm=llm,
messages=messages,
sampling_params=sampling_params,
json_schema=json_schema,
stream=stream,
tools=tools,
tool_config=tool_config,
)
async def llm_completion(
self,
llm: lms.LLM,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
json_schema: Optional[JsonSchemaResponseFormat] = None,
stream: Optional[bool] = False,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
config = self._get_completion_config_from_params(sampling_params)
if stream:
async def stream_generator():
try:
prediction_stream = await asyncio.to_thread(
llm.complete_stream,
prompt=interleaved_content_as_str(content),
config=config,
response_format=json_schema,
)
async for chunk in self._async_iterate(prediction_stream):
yield CompletionResponseStreamChunk(
delta=chunk.content,
)
except Exception as e:
self._log_error(e, "streaming completion")
# Return a fallback response in case of error
yield CompletionResponseStreamChunk(
delta="Error processing response",
)
return stream_generator()
else:
try:
response = await asyncio.to_thread(
llm.complete,
prompt=interleaved_content_as_str(content),
config=config,
response_format=json_schema,
)
# If we have a JSON schema, ensure the response is valid JSON
if json_schema is not None:
valid_json = self._handle_json_extraction(response.content, "completion response")
if valid_json:
return CompletionResponse(
content=valid_json, # Already serialized in _handle_json_extraction
stop_reason=self._get_stop_reason(response.stats.stop_reason),
)
# If we couldn't extract valid JSON, continue with the original content
return CompletionResponse(
content=response.content,
stop_reason=self._get_stop_reason(response.stats.stop_reason),
)
except Exception as e:
self._log_error(e, "LMStudio completion")
# Return a fallback response with an error message
return self._create_fallback_completion_response()
def _convert_message_list_to_lmstudio_chat(
self, messages: List[Message]
) -> lms.Chat:
chat = lms.Chat()
for message in messages:
if content_has_media(message.content):
raise NotImplementedError(
"Media content is not supported in LMStudio messages"
)
if message.role == "user":
chat.add_user_message(interleaved_content_as_str(message.content))
elif message.role == "system":
chat.add_system_prompt(interleaved_content_as_str(message.content))
elif message.role == "assistant":
chat.add_assistant_response(interleaved_content_as_str(message.content))
else:
raise ValueError(f"Unsupported message role: {message.role}")
return chat
def _convert_prediction_to_chat_response(
self, result: lms.PredictionResult
) -> ChatCompletionResponse:
response = ChatCompletionResponse(
completion_message=CompletionMessage(
content=result.content,
stop_reason=self._get_stop_reason(result.stats.stop_reason),
tool_calls=None,
)
)
return response
def _get_completion_config_from_params(
self,
params: Optional[SamplingParams] = None,
) -> lms.LlmPredictionConfigDict:
options = lms.LlmPredictionConfigDict()
if params is None:
return options
if isinstance(params.strategy, GreedySamplingStrategy):
options.update({"temperature": 0.0})
elif isinstance(params.strategy, TopPSamplingStrategy):
options.update(
{
"temperature": params.strategy.temperature,
"topPSampling": params.strategy.top_p,
}
)
elif isinstance(params.strategy, TopKSamplingStrategy):
options.update({"topKSampling": params.strategy.top_k})
else:
raise ValueError(f"Unsupported sampling strategy: {params.strategy}")
options.update(
{
"maxTokens": params.max_tokens if params.max_tokens != 0 else None,
"repetitionPenalty": (
params.repetition_penalty
if params.repetition_penalty != 0
else None
),
}
)
return options
def _get_stop_reason(self, stop_reason: LlmPredictionStopReason) -> StopReason:
if stop_reason == "eosFound":
return StopReason.end_of_message
elif stop_reason == "maxPredictedTokensReached":
return StopReason.out_of_tokens
else:
return StopReason.end_of_turn
async def _async_iterate(self, iterable):
"""Asynchronously iterate over a synchronous iterable."""
iterator = iter(iterable)
def safe_next(it):
"""This is necessary to communicate StopIteration across threads"""
try:
return (next(it), False)
except StopIteration:
return (None, True)
while True:
item, done = await asyncio.to_thread(safe_next, iterator)
if done:
break
yield item
async def _convert_request_to_rest_call(
self, request: ChatCompletionRequest
) -> dict:
compatible_request = self._convert_sampling_params(request.sampling_params)
compatible_request["model"] = request.model
compatible_request["messages"] = [
await convert_message_to_openai_dict_new(m) for m in request.messages
]
if request.response_format:
compatible_request["response_format"] = {
"type": "json_schema",
"json_schema": request.response_format.json_schema,
}
if request.tools is not None:
compatible_request["tools"] = [
convert_tooldef_to_openai_tool(tool) for tool in request.tools
]
compatible_request["logprobs"] = False
compatible_request["stream"] = request.stream
compatible_request["extra_headers"] = {
b"User-Agent": b"llama-stack: lmstudio-inference-adapter"
}
return compatible_request
def _convert_sampling_params(self, sampling_params: Optional[SamplingParams]) -> dict:
params = {}
if sampling_params is None:
return params
params["frequency_penalty"] = sampling_params.repetition_penalty
if sampling_params.max_tokens:
params["max_completion_tokens"] = sampling_params.max_tokens
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
params["top_p"] = sampling_params.strategy.top_p
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
params["extra_body"]["top_k"] = sampling_params.strategy.top_k
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
params["temperature"] = 0.0
return params