llama-stack-mirror/src/llama_stack/providers/remote/inference/databricks/databricks.py
Ashwin Bharambe da8f014b96
feat(models): list models available via provider_data header (#3968)
## Summary

When users provide API keys via `X-LlamaStack-Provider-Data` header,
`models.list()` now returns models they can access from those providers,
not just pre-registered models from the registry.

This complements the routing fix from f88416ef8 which enabled inference
calls with `provider_id/model_id` format for unregistered models. Users
can now discover which models are available to them before making
inference requests.

The implementation reuses
`NeedsRequestProviderData.get_request_provider_data()` to validate
credentials, then dynamically fetches models from providers without
caching them since they're user-specific. Registry models take
precedence to respect any pre-configured aliases.

## Test Script

```python
#!/usr/bin/env python3
import json
import os
from openai import OpenAI

# Test 1: Without provider_data header
client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="dummy")
models = client.models.list()
anthropic_without = [m.id for m in models.data if m.id and "anthropic" in m.id]
print(f"Without header: {len(models.data)} models, {len(anthropic_without)} anthropic")

# Test 2: With provider_data header containing Anthropic API key
anthropic_api_key = os.environ["ANTHROPIC_API_KEY"]
client_with_key = OpenAI(
    base_url="http://localhost:8321/v1/openai/v1",
    api_key="dummy",
    default_headers={
        "X-LlamaStack-Provider-Data": json.dumps({"anthropic_api_key": anthropic_api_key})
    }
)
models_with_key = client_with_key.models.list()
anthropic_with = [m.id for m in models_with_key.data if m.id and "anthropic" in m.id]
print(f"With header: {len(models_with_key.data)} models, {len(anthropic_with)} anthropic")
print(f"Anthropic models: {anthropic_with}")

assert len(anthropic_with) > len(anthropic_without), "Should have more anthropic models with API key"
print("\n✓ Test passed!")
```

Run with a stack that has Anthropic provider configured (but without API
key in config):
```bash
ANTHROPIC_API_KEY=sk-ant-... python test_provider_data_models.py
```
2025-10-29 14:03:03 -07:00

48 lines
1.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Iterable
from databricks.sdk import WorkspaceClient
from llama_stack.apis.inference import OpenAICompletion, OpenAICompletionRequestWithExtraBody
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import DatabricksImplConfig
logger = get_logger(name=__name__, category="inference::databricks")
class DatabricksInferenceAdapter(OpenAIMixin):
config: DatabricksImplConfig
provider_data_api_key_field: str = "databricks_api_token"
# source: https://docs.databricks.com/aws/en/machine-learning/foundation-model-apis/supported-models
embedding_model_metadata: dict[str, dict[str, int]] = {
"databricks-gte-large-en": {"embedding_dimension": 1024, "context_length": 8192},
"databricks-bge-large-en": {"embedding_dimension": 1024, "context_length": 512},
}
def get_base_url(self) -> str:
return f"{self.config.url}/serving-endpoints"
async def list_provider_model_ids(self) -> Iterable[str]:
# Filter out None values from endpoint names
api_token = self._get_api_key_from_config_or_provider_data()
return [
endpoint.name # type: ignore[misc]
for endpoint in WorkspaceClient(
host=self.config.url, token=api_token
).serving_endpoints.list() # TODO: this is not async
]
async def openai_completion(
self,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError()