llama-stack-mirror/llama_stack/providers/tests/eval/test_eval.py
2024-11-07 15:20:22 -08:00

151 lines
5.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_models.llama3.api import SamplingParams
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
BenchmarkEvalTaskConfig,
EvalTaskDef,
ModelCandidate,
)
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
# How to run this test:
#
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
class Testeval:
@pytest.mark.asyncio
async def test_eval_tasks_list(self, eval_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
_, eval_tasks_impl, _, _, _, _ = eval_stack
response = await eval_tasks_impl.list_eval_tasks()
assert isinstance(response, list)
assert len(response) >= 1
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
provider = datasetio_impl.routing_table.get_provider_impl(
"test_dataset_for_eval"
)
if provider.__provider_spec__.provider_type != "meta-reference":
pytest.skip("Only meta-reference provider supports registering datasets")
response = await datasets_impl.list_datasets()
assert len(response) == 1
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::equality",
]
response = await eval_impl.evaluate_rows(
input_rows=rows.rows,
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert len(response.generations) == 3
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
assert "meta-reference::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
provider = datasetio_impl.routing_table.get_provider_impl(
"test_dataset_for_eval"
)
if provider.__provider_spec__.provider_type != "meta-reference":
pytest.skip("Only meta-reference provider supports registering datasets")
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::subset_of",
]
response = await eval_impl.run_eval(
task=EvalTaskDef(
# NOTE: this is needed to make the router work for all app evals
identifier="meta-reference::app_eval",
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
),
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(
response.job_id, "meta-reference::app_eval"
)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(
response.job_id, "meta-reference::app_eval"
)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack):
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
pytest.skip(
"Only huggingface provider supports pre-registered benchmarks datasets"
)
# list benchmarks
response = await eval_tasks_impl.list_eval_tasks()
assert len(response) > 0
benchmark_id = "meta-reference-mmlu"
response = await eval_impl.run_benchmark(
benchmark_id=benchmark_id,
benchmark_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
num_examples=3,
),
)
job_status = await eval_impl.job_status(response.job_id, benchmark_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(response.job_id, benchmark_id)
assert eval_response is not None
assert len(eval_response.generations) == 3