llama-stack-mirror/docs/docs/providers/vector_io/remote_weaviate.mdx
Alexey Rybak d23865757f
docs: provider and distro codegen migration (#3531)
# What does this PR do?

<!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. -->

<!-- If resolving an issue, uncomment and update the line below -->

<!-- Closes #[issue-number] -->

- Updates provider and distro codegen to handle the new format
- Migrates provider and distro files to the new format

## Test Plan

- Manual testing

<!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
2025-09-24 14:01:29 -07:00

88 lines
2.8 KiB
Text

---
description: |
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
It allows you to store and query vectors directly within a Weaviate database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features
Weaviate supports:
- Store embeddings and their metadata
- Vector search
- Full-text search
- Hybrid search
- Document storage
- Metadata filtering
- Multi-modal retrieval
## Usage
To use Weaviate in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use chroma.
3. Start storing and querying vectors.
## Installation
To install Weaviate see the [Weaviate quickstart documentation](https://weaviate.io/developers/weaviate/quickstart).
## Documentation
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
sidebar_label: Remote - Weaviate
title: remote::weaviate
---
# remote::weaviate
## Description
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
It allows you to store and query vectors directly within a Weaviate database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features
Weaviate supports:
- Store embeddings and their metadata
- Vector search
- Full-text search
- Hybrid search
- Document storage
- Metadata filtering
- Multi-modal retrieval
## Usage
To use Weaviate in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use chroma.
3. Start storing and querying vectors.
## Installation
To install Weaviate see the [Weaviate quickstart documentation](https://weaviate.io/developers/weaviate/quickstart).
## Documentation
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
| `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db
```