llama-stack-mirror/llama_stack/providers/remote/inference/together/together.py
Matthew Farrellee d23ed26238
chore: turn OpenAIMixin into a pydantic.BaseModel (#3671)
# What does this PR do?

- implement get_api_key instead of relying on
LiteLLMOpenAIMixin.get_api_key
 - remove use of LiteLLMOpenAIMixin
 - add default initialize/shutdown methods to OpenAIMixin
 - remove __init__s to allow proper pydantic construction
- remove dead code from vllm adapter and associated / duplicate unit
tests
 - update vllm adapter to use openaimixin for model registration
 - remove ModelRegistryHelper from fireworks & together adapters
 - remove Inference from nvidia adapter
 - complete type hints on embedding_model_metadata
- allow extra fields on OpenAIMixin, for model_store, __provider_id__,
etc
 - new recordings for ollama
 - enhance the list models error handling
- update cerebras (remove cerebras-cloud-sdk) and anthropic (custom
model listing) inference adapters
 - parametrized test_inference_client_caching
- remove cerebras, databricks, fireworks, together from blanket mypy
exclude
 - removed unnecessary litellm deps

## Test Plan

ci
2025-10-06 11:33:19 -04:00

112 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Iterable
from together import AsyncTogether
from together.constants import BASE_URL
from llama_stack.apis.inference import (
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
from llama_stack.apis.models import Model
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import TogetherImplConfig
logger = get_logger(name=__name__, category="inference::together")
class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
config: TogetherImplConfig
embedding_model_metadata: dict[str, dict[str, int]] = {
"togethercomputer/m2-bert-80M-32k-retrieval": {"embedding_dimension": 768, "context_length": 32768},
"BAAI/bge-large-en-v1.5": {"embedding_dimension": 1024, "context_length": 512},
"BAAI/bge-base-en-v1.5": {"embedding_dimension": 768, "context_length": 512},
"Alibaba-NLP/gte-modernbert-base": {"embedding_dimension": 768, "context_length": 8192},
"intfloat/multilingual-e5-large-instruct": {"embedding_dimension": 1024, "context_length": 512},
}
_model_cache: dict[str, Model] = {}
provider_data_api_key_field: str = "together_api_key"
def get_api_key(self):
return self.config.api_key.get_secret_value() if self.config.api_key else None
def get_base_url(self):
return BASE_URL
def _get_client(self) -> AsyncTogether:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return AsyncTogether(api_key=together_api_key)
async def list_provider_model_ids(self) -> Iterable[str]:
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
return [m.id for m in await self._get_client().models.list()]
async def should_refresh_models(self) -> bool:
return True
async def check_model_availability(self, model):
return model in self._model_cache
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""
Together's OpenAI-compatible embeddings endpoint is not compatible with
the standard OpenAI embeddings endpoint.
The endpoint -
- not all models return usage information
- does not support user param, returns 400 Unrecognized request arguments supplied: user
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
"""
# Together support ticket #13332 -> will not fix
if user is not None:
raise ValueError("Together's embeddings endpoint does not support user param.")
# Together support ticket #13333 -> escalated
if dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format,
)
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
# Together support ticket #13330 -> escalated
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
if not hasattr(response, "usage") or response.usage is None:
logger.warning(
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
)
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
return response # type: ignore[no-any-return]