llama-stack-mirror/tests/integration/suites.py
Matthew Farrellee d23ed26238
chore: turn OpenAIMixin into a pydantic.BaseModel (#3671)
# What does this PR do?

- implement get_api_key instead of relying on
LiteLLMOpenAIMixin.get_api_key
 - remove use of LiteLLMOpenAIMixin
 - add default initialize/shutdown methods to OpenAIMixin
 - remove __init__s to allow proper pydantic construction
- remove dead code from vllm adapter and associated / duplicate unit
tests
 - update vllm adapter to use openaimixin for model registration
 - remove ModelRegistryHelper from fireworks & together adapters
 - remove Inference from nvidia adapter
 - complete type hints on embedding_model_metadata
- allow extra fields on OpenAIMixin, for model_store, __provider_id__,
etc
 - new recordings for ollama
 - enhance the list models error handling
- update cerebras (remove cerebras-cloud-sdk) and anthropic (custom
model listing) inference adapters
 - parametrized test_inference_client_caching
- remove cerebras, databricks, fireworks, together from blanket mypy
exclude
 - removed unnecessary litellm deps

## Test Plan

ci
2025-10-06 11:33:19 -04:00

181 lines
5.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Central definition of integration test suites. You can use these suites by passing --suite=name to pytest.
# For example:
#
# ```bash
# pytest tests/integration/ --suite=vision --setup=ollama
# ```
#
"""
Each suite defines what to run (roots). Suites can be run with different global setups defined in setups.py.
Setups provide environment variables and model defaults that can be reused across multiple suites.
CLI examples:
pytest tests/integration --suite=responses --setup=gpt
pytest tests/integration --suite=vision --setup=ollama
pytest tests/integration --suite=base --setup=vllm
"""
from pathlib import Path
from pydantic import BaseModel, Field
this_dir = Path(__file__).parent
class Suite(BaseModel):
name: str
roots: list[str]
default_setup: str | None = None
class Setup(BaseModel):
"""A reusable test configuration with environment and CLI defaults."""
name: str
description: str
defaults: dict[str, str] = Field(default_factory=dict)
env: dict[str, str] = Field(default_factory=dict)
# Global setups - can be used with any suite "technically" but in reality, some setups might work
# only for specific test suites.
SETUP_DEFINITIONS: dict[str, Setup] = {
"ollama": Setup(
name="ollama",
description="Local Ollama provider with text + safety models",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
},
defaults={
"text_model": "ollama/llama3.2:3b-instruct-fp16",
"embedding_model": "ollama/all-minilm:l6-v2",
"safety_model": "ollama/llama-guard3:1b",
"safety_shield": "llama-guard",
},
),
"ollama-vision": Setup(
name="ollama",
description="Local Ollama provider with a vision model",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
},
defaults={
"vision_model": "ollama/llama3.2-vision:11b",
"embedding_model": "ollama/all-minilm:l6-v2",
},
),
"vllm": Setup(
name="vllm",
description="vLLM provider with a text model",
env={
"VLLM_URL": "http://localhost:8000/v1",
},
defaults={
"text_model": "vllm/meta-llama/Llama-3.2-1B-Instruct",
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
},
),
"gpt": Setup(
name="gpt",
description="OpenAI GPT models for high-quality responses and tool calling",
defaults={
"text_model": "openai/gpt-4o",
"embedding_model": "openai/text-embedding-3-small",
},
),
"tgi": Setup(
name="tgi",
description="Text Generation Inference (TGI) provider with a text model",
env={
"TGI_URL": "http://localhost:8080",
},
defaults={
"text_model": "tgi/Qwen/Qwen3-0.6B",
},
),
"together": Setup(
name="together",
description="Together computer models",
defaults={
"text_model": "together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
"embedding_model": "together/togethercomputer/m2-bert-80M-32k-retrieval",
},
),
"cerebras": Setup(
name="cerebras",
description="Cerebras models",
defaults={
"text_model": "cerebras/llama-3.3-70b",
},
),
"databricks": Setup(
name="databricks",
description="Databricks models",
defaults={
"text_model": "databricks/databricks-meta-llama-3-3-70b-instruct",
"embedding_model": "databricks/databricks-bge-large-en",
},
),
"fireworks": Setup(
name="fireworks",
description="Fireworks provider with a text model",
defaults={
"text_model": "fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct",
"embedding_model": "fireworks/accounts/fireworks/models/qwen3-embedding-8b",
},
),
"anthropic": Setup(
name="anthropic",
description="Anthropic Claude models",
defaults={
"text_model": "anthropic/claude-3-5-haiku-20241022",
},
),
"llama-api": Setup(
name="llama-openai-compat",
description="Llama models from https://api.llama.com",
defaults={
"text_model": "llama_openai_compat/Llama-3.3-8B-Instruct",
},
),
"groq": Setup(
name="groq",
description="Groq models",
defaults={
"text_model": "groq/llama-3.3-70b-versatile",
},
),
}
base_roots = [
str(p)
for p in this_dir.glob("*")
if p.is_dir()
and p.name not in ("__pycache__", "fixtures", "test_cases", "recordings", "responses", "post_training")
]
SUITE_DEFINITIONS: dict[str, Suite] = {
"base": Suite(
name="base",
roots=base_roots,
default_setup="ollama",
),
"responses": Suite(
name="responses",
roots=["tests/integration/responses"],
default_setup="gpt",
),
"vision": Suite(
name="vision",
roots=["tests/integration/inference/test_vision_inference.py"],
default_setup="ollama-vision",
),
}