llama-stack-mirror/tests
ehhuang 4c2fcb6b51
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 8s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 13s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 7s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Python Package Build Test / build (3.12) (push) Failing after 10s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 18s
API Conformance Tests / check-schema-compatibility (push) Successful in 22s
UI Tests / ui-tests (22) (push) Successful in 29s
Pre-commit / pre-commit (push) Successful in 1m25s
chore: refactor server.main (#3462)
# What does this PR do?
As shown in #3421, we can scale stack to handle more RPS with k8s
replicas. This PR enables multi process stack with uvicorn --workers so
that we can achieve the same scaling without being in k8s.

To achieve that we refactor main to split out the app construction
logic. This method needs to be non-async. We created a new `Stack` class
to house impls and have a `start()` method to be called in lifespan to
start background tasks instead of starting them in the old
`construct_stack`. This way we avoid having to manage an event loop
manually.


## Test Plan
CI

> uv run --with llama-stack python -m llama_stack.core.server.server
benchmarking/k8s-benchmark/stack_run_config.yaml

works.

> LLAMA_STACK_CONFIG=benchmarking/k8s-benchmark/stack_run_config.yaml uv
run uvicorn llama_stack.core.server.server:create_app --port 8321
--workers 4

works.
2025-09-18 21:11:13 -07:00
..
common chore(tests): fix responses and vector_io tests (#3119) 2025-08-12 16:15:53 -07:00
containers feat(ci): add support for running vision inference tests (#2972) 2025-07-31 11:50:42 -07:00
external feat: combine ProviderSpec datatypes (#3378) 2025-09-18 16:10:00 +02:00
integration chore: update the ollama inference impl to use OpenAIMixin for openai-compat functions (#3395) 2025-09-18 13:09:57 +02:00
unit chore: refactor server.main (#3462) 2025-09-18 21:11:13 -07:00
__init__.py refactor(test): introduce --stack-config and simplify options (#1404) 2025-03-05 17:02:02 -08:00
README.md feat(tests): introduce a test "suite" concept to encompass dirs, options (#3339) 2025-09-05 13:58:49 -07:00

There are two obvious types of tests:

Type Location Purpose
Unit tests/unit/ Fast, isolated component testing
Integration tests/integration/ End-to-end workflows with record-replay

Both have their place. For unit tests, it is important to create minimal mocks and instead rely more on "fakes". Mocks are too brittle. In either case, tests must be very fast and reliable.

Record-replay for integration tests

Testing AI applications end-to-end creates some challenges:

  • API costs accumulate quickly during development and CI
  • Non-deterministic responses make tests unreliable
  • Multiple providers require testing the same logic across different APIs

Our solution: Record real API responses once, replay them for fast, deterministic tests. This is better than mocking because AI APIs have complex response structures and streaming behavior. Mocks can miss edge cases that real APIs exhibit. A single test can exercise underlying APIs in multiple complex ways making it really hard to mock.

This gives you:

  • Cost control - No repeated API calls during development
  • Speed - Instant test execution with cached responses
  • Reliability - Consistent results regardless of external service state
  • Provider coverage - Same tests work across OpenAI, Anthropic, local models, etc.

Testing Quick Start

You can run the unit tests with:

uv run --group unit pytest -sv tests/unit/

For running integration tests, you must provide a few things:

  • A stack config. This is a pointer to a stack. You have a few ways to point to a stack:

    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • Any API keys you need to use should be set in the environment, or can be passed in with the --env option.

You can run the integration tests in replay mode with:

# Run all tests with existing recordings
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Re-recording tests

Local Re-recording (Manual Setup Required)

If you want to re-record tests locally, you can do so with:

LLAMA_STACK_TEST_INFERENCE_MODE=record \
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter -k "<appropriate test name>"

This will record new API responses and overwrite the existing recordings.


You must be careful when re-recording. CI workflows assume a specific setup for running the replay-mode tests. You must re-record the tests in the same way as the CI workflows. This means
- you need Ollama running and serving some specific models.
- you are using the `starter` distribution.

For easier re-recording without local setup, use the automated recording workflow:

# Record tests for specific test subdirectories
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents,inference"

# Record with vision tests enabled
./scripts/github/schedule-record-workflow.sh --test-suite vision

# Record with specific provider
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents" --test-provider vllm

This script:

  • 🚀 Runs in GitHub Actions - no local Ollama setup required
  • 🔍 Auto-detects your branch and associated PR
  • 🍴 Works from forks - handles repository context automatically
  • Commits recordings back to your branch

Prerequisites:

  • GitHub CLI: brew install gh && gh auth login
  • jq: brew install jq
  • Your branch pushed to a remote

Supported providers: vllm, ollama

Next Steps