llama-stack-mirror/.github/workflows/integration-mlflow-tests.yml
William Caban 0e0d311dea feat: Add MLflow Prompt Registry provider (squashed commit)
Add a new remote provider that integrates MLflow's Prompt Registry with
Llama Stack's prompts API, enabling centralized prompt management and
versioning using MLflow as the backend.

Features:
- Full implementation of Llama Stack Prompts protocol
- Support for prompt versioning and default version management
- Automatic variable extraction from Jinja2-style templates
- MLflow tag-based metadata for efficient prompt filtering
- Flexible authentication (config, environment variables, per-request)
- Bidirectional ID mapping (pmpt_<hex> ↔ llama_prompt_<hex>)
- Comprehensive error handling and validation

Implementation:
- Remote provider: src/llama_stack/providers/remote/prompts/mlflow/
- Inline reference provider: src/llama_stack/providers/inline/prompts/reference/
- MLflow 3.4+ required for Prompt Registry API support
- Deterministic ID mapping ensures consistency across conversions

Testing:
- 15 comprehensive unit tests (config validation, ID mapping)
- 18 end-to-end integration tests (full CRUD workflows)
- GitHub Actions workflow for automated CI testing with MLflow server
- Integration test fixtures with automatic server setup

Documentation:
- Complete provider configuration reference
- Setup and usage examples with code samples
- Authentication options and security best practices

Signed-off-by: William Caban <william.caban@gmail.com>
Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-26 09:42:50 -05:00

125 lines
3.6 KiB
YAML

name: MLflow Prompts Integration Tests
run-name: Run the integration test suite with MLflow Prompt Registry provider
on:
push:
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
pull_request:
branches:
- main
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'src/llama_stack/providers/remote/prompts/mlflow/**'
- 'tests/integration/providers/remote/prompts/mlflow/**'
- 'tests/unit/providers/remote/prompts/mlflow/**'
- 'uv.lock'
- 'pyproject.toml'
- 'requirements.txt'
- '.github/workflows/integration-mlflow-tests.yml' # This workflow
schedule:
- cron: '0 0 * * *' # Daily at 12 AM UTC
concurrency:
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }}
cancel-in-progress: true
jobs:
test-mlflow:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
with:
python-version: ${{ matrix.python-version }}
- name: Setup MLflow Server
run: |
docker run --rm -d --pull always \
--name mlflow \
-p 5555:5555 \
ghcr.io/mlflow/mlflow:latest \
mlflow server \
--host 0.0.0.0 \
--port 5555 \
--backend-store-uri sqlite:///mlflow.db \
--default-artifact-root ./mlruns
- name: Wait for MLflow to be ready
run: |
echo "Waiting for MLflow to be ready..."
for i in {1..60}; do
if curl -s http://localhost:5555/health | grep -q '"status": "OK"'; then
echo "MLflow is ready!"
exit 0
fi
echo "Not ready yet... ($i/60)"
sleep 2
done
echo "MLflow failed to start"
docker logs mlflow
exit 1
- name: Verify MLflow API
run: |
echo "Testing MLflow API..."
curl -X GET http://localhost:5555/api/2.0/mlflow/experiments/list
echo ""
echo "MLflow API is responding!"
- name: Build Llama Stack
run: |
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
- name: Install MLflow Python client
run: |
uv pip install 'mlflow>=3.4.0'
- name: Check Storage and Memory Available Before Tests
if: ${{ always() }}
run: |
free -h
df -h
- name: Run MLflow Integration Tests
env:
MLFLOW_TRACKING_URI: http://localhost:5555
run: |
uv run --no-sync \
pytest -sv \
tests/integration/providers/remote/prompts/mlflow/
- name: Check Storage and Memory Available After Tests
if: ${{ always() }}
run: |
free -h
df -h
- name: Write MLflow logs to file
if: ${{ always() }}
run: |
docker logs mlflow > mlflow.log 2>&1 || true
- name: Upload all logs to artifacts
if: ${{ always() }}
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
with:
name: mlflow-logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.python-version }}
path: |
*.log
retention-days: 1
- name: Stop MLflow container
if: ${{ always() }}
run: |
docker stop mlflow || true