llama-stack-mirror/tests/unit/providers/inference/test_remote_vllm.py
Matthew Farrellee e892a3f7f4
feat: add refresh_models support to inference adapters (default: false) (#3719)
# What does this PR do?

inference adapters can now configure `refresh_models: bool` to control
periodic model listing from their providers

BREAKING CHANGE: together inference adapter default changed. previously
always refreshed, now follows config.

addresses "models: refresh" on #3517

## Test Plan

ci w/ new tests
2025-10-07 15:19:56 +02:00

188 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import time
from unittest.mock import AsyncMock, MagicMock, PropertyMock, patch
import pytest
from llama_stack.apis.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChoice,
ToolChoice,
)
from llama_stack.apis.models import Model
from llama_stack.providers.datatypes import HealthStatus
from llama_stack.providers.remote.inference.vllm.config import VLLMInferenceAdapterConfig
from llama_stack.providers.remote.inference.vllm.vllm import VLLMInferenceAdapter
# These are unit test for the remote vllm provider
# implementation. This should only contain tests which are specific to
# the implementation details of those classes. More general
# (API-level) tests should be placed in tests/integration/inference/
#
# How to run this test:
#
# pytest tests/unit/providers/inference/test_remote_vllm.py \
# -v -s --tb=short --disable-warnings
@pytest.fixture(scope="function")
async def vllm_inference_adapter():
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
inference_adapter = VLLMInferenceAdapter(config=config)
inference_adapter.model_store = AsyncMock()
await inference_adapter.initialize()
return inference_adapter
async def test_old_vllm_tool_choice(vllm_inference_adapter):
"""
Test that we set tool_choice to none when no tools are in use
to support older versions of vLLM
"""
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
vllm_inference_adapter.model_store.get_model.return_value = mock_model
# Patch the client property to avoid instantiating a real AsyncOpenAI client
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock()
mock_client_property.return_value = mock_client
# No tools but auto tool choice
await vllm_inference_adapter.openai_chat_completion(
"mock-model",
[],
stream=False,
tools=None,
tool_choice=ToolChoice.auto.value,
)
mock_client.chat.completions.create.assert_called()
call_args = mock_client.chat.completions.create.call_args
# Ensure tool_choice gets converted to none for older vLLM versions
assert call_args.kwargs["tool_choice"] == ToolChoice.none.value
async def test_health_status_success(vllm_inference_adapter):
"""
Test the health method of VLLM InferenceAdapter when the connection is successful.
This test verifies that the health method returns a HealthResponse with status OK
when the /health endpoint responds successfully.
"""
with patch("httpx.AsyncClient") as mock_client_class:
# Create mock response
mock_response = MagicMock()
mock_response.raise_for_status.return_value = None
# Create mock client instance
mock_client_instance = MagicMock()
mock_client_instance.get = AsyncMock(return_value=mock_response)
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
# Call the health method
health_response = await vllm_inference_adapter.health()
# Verify the response
assert health_response["status"] == HealthStatus.OK
# Verify that the health endpoint was called
mock_client_instance.get.assert_called_once()
call_args = mock_client_instance.get.call_args[0]
assert call_args[0].endswith("/health")
async def test_health_status_failure(vllm_inference_adapter):
"""
Test the health method of VLLM InferenceAdapter when the connection fails.
This test verifies that the health method returns a HealthResponse with status ERROR
and an appropriate error message when the connection to the vLLM server fails.
"""
with patch("httpx.AsyncClient") as mock_client_class:
# Create mock client instance that raises an exception
mock_client_instance = MagicMock()
mock_client_instance.get.side_effect = Exception("Connection failed")
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
# Call the health method
health_response = await vllm_inference_adapter.health()
# Verify the response
assert health_response["status"] == HealthStatus.ERROR
assert "Health check failed: Connection failed" in health_response["message"]
async def test_health_status_no_static_api_key(vllm_inference_adapter):
"""
Test the health method of VLLM InferenceAdapter when no static API key is provided.
This test verifies that the health method returns a HealthResponse with status OK
when the /health endpoint responds successfully, regardless of API token configuration.
"""
with patch("httpx.AsyncClient") as mock_client_class:
# Create mock response
mock_response = MagicMock()
mock_response.raise_for_status.return_value = None
# Create mock client instance
mock_client_instance = MagicMock()
mock_client_instance.get = AsyncMock(return_value=mock_response)
mock_client_class.return_value.__aenter__.return_value = mock_client_instance
# Call the health method
health_response = await vllm_inference_adapter.health()
# Verify the response
assert health_response["status"] == HealthStatus.OK
async def test_openai_chat_completion_is_async(vllm_inference_adapter):
"""
Verify that openai_chat_completion is async and doesn't block the event loop.
To do this we mock the underlying inference with a sleep, start multiple
inference calls in parallel, and ensure the total time taken is less
than the sum of the individual sleep times.
"""
sleep_time = 0.5
async def mock_create(*args, **kwargs):
await asyncio.sleep(sleep_time)
return OpenAIChatCompletion(
id="chatcmpl-abc123",
created=1,
model="mock-model",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(
content="nothing interesting",
),
finish_reason="stop",
index=0,
)
],
)
async def do_inference():
await vllm_inference_adapter.openai_chat_completion(
"mock-model", messages=["one fish", "two fish"], stream=False
)
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_create_client:
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock(side_effect=mock_create)
mock_create_client.return_value = mock_client
start_time = time.time()
await asyncio.gather(do_inference(), do_inference(), do_inference(), do_inference())
total_time = time.time() - start_time
assert mock_create_client.call_count == 4 # no cheating
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"