mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 04:53:54 +00:00
350 lines
14 KiB
Python
350 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import pytest
|
|
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
|
|
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
|
|
from llama_stack_client.types.post_training_job import PostTrainingJob
|
|
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
|
TrainingConfig,
|
|
TrainingConfigDataConfig,
|
|
TrainingConfigOptimizerConfig,
|
|
)
|
|
|
|
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
|
|
|
|
|
class TestNvidiaPostTraining(unittest.TestCase):
|
|
# ToDo: add tests for env variables, models supported.
|
|
def setUp(self):
|
|
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
|
|
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
|
|
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002" # mocking llama stack base url
|
|
|
|
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
|
|
_ = self.llama_stack_client.initialize()
|
|
|
|
## ToDo: post health checks for customizer are enabled, include test cases for NVIDIA_CUSTOMIZER_URL
|
|
|
|
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
|
|
"""Helper method to verify request details in mock calls."""
|
|
call_args = mock_call.call_args
|
|
|
|
if expected_method and expected_path:
|
|
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
|
|
assert call_args[0] == (expected_method, expected_path)
|
|
else:
|
|
assert call_args[1]["method"] == expected_method
|
|
assert call_args[1]["path"] == expected_path
|
|
|
|
if expected_params:
|
|
assert call_args[1]["params"] == expected_params
|
|
|
|
if expected_json:
|
|
for key, value in expected_json.items():
|
|
assert call_args[1]["json"][key] == value
|
|
|
|
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
|
def test_supervised_fine_tune(self, mock_make_request):
|
|
"""Test the supervised fine-tuning API call.
|
|
ToDo: add tests for env variables."""
|
|
mock_make_request.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"config": {
|
|
"schema_version": "1.0",
|
|
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.569837",
|
|
"custom_fields": {},
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"model_path": "llama-3_1-8b-instruct",
|
|
"training_types": [],
|
|
"finetuning_types": ["lora"],
|
|
"precision": "bf16",
|
|
"num_gpus": 4,
|
|
"num_nodes": 1,
|
|
"micro_batch_size": 1,
|
|
"tensor_parallel_size": 1,
|
|
"max_seq_length": 4096,
|
|
},
|
|
"dataset": {
|
|
"schema_version": "1.0",
|
|
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.542660",
|
|
"custom_fields": {},
|
|
"name": "sample-basic-test",
|
|
"version_id": "main",
|
|
"version_tags": [],
|
|
},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "created",
|
|
"project": "default",
|
|
"custom_fields": {},
|
|
"ownership": {"created_by": "me", "access_policies": {}},
|
|
}
|
|
|
|
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16, adapter_dropout=0.1)
|
|
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
|
|
# check the output is a PostTrainingJob
|
|
# Note: Although the type is PostTrainingJob: llama_stack.apis.post_training.PostTrainingJob,
|
|
# post llama_stack_client initialization it gets translated to llama_stack_client.types.post_training_job.PostTrainingJob
|
|
assert isinstance(training_job, PostTrainingJob)
|
|
|
|
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
mock_make_request,
|
|
"POST",
|
|
"/v1/customization/jobs",
|
|
expected_json={
|
|
"config": "meta/llama-3.1-8b-instruct",
|
|
"dataset": {"name": "sample-basic-test", "namespace": ""},
|
|
"hyperparameters": {
|
|
"training_type": "sft",
|
|
"finetuning_type": "lora",
|
|
"epochs": 2,
|
|
"batch_size": 16,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
},
|
|
)
|
|
|
|
def test_supervised_fine_tune_with_qat(self):
|
|
algorithm_config = QatFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
# This will raise NotImplementedError since QAT is not supported
|
|
with self.assertRaises(NotImplementedError):
|
|
self.llama_stack_client.post_training.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
|
|
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
|
def test_get_job_status(self, mock_make_request):
|
|
mock_make_request.return_value = {
|
|
"created_at": "2024-12-09T04:06:28.580220",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"status": "completed",
|
|
"steps_completed": 1210,
|
|
"epochs_completed": 2,
|
|
"percentage_done": 100.0,
|
|
"best_epoch": 2,
|
|
"train_loss": 1.718016266822815,
|
|
"val_loss": 1.8661999702453613,
|
|
}
|
|
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
status = self.llama_stack_client.post_training.job.status(job_uuid=job_id)
|
|
|
|
assert isinstance(status, JobStatusResponse)
|
|
assert status.status == "completed"
|
|
assert status.steps_completed == 1210
|
|
assert status.epochs_completed == 2
|
|
assert status.percentage_done == 100.0
|
|
assert status.best_epoch == 2
|
|
assert status.train_loss == 1.718016266822815
|
|
assert status.val_loss == 1.8661999702453613
|
|
|
|
mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
|
|
)
|
|
|
|
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
|
def test_get_job(self, mock_make_request):
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
mock_make_request.return_value = {
|
|
"data": [
|
|
{
|
|
"id": job_id,
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"config": {
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
},
|
|
"dataset": {"name": "default/sample-basic-test"},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "completed",
|
|
"project": "default",
|
|
}
|
|
]
|
|
}
|
|
|
|
jobs = self.llama_stack_client.post_training.job.list()
|
|
assert isinstance(jobs, list)
|
|
assert len(jobs) == 1
|
|
job = jobs[0]
|
|
assert job.job_uuid == job_id
|
|
assert job.status == "completed"
|
|
|
|
mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
mock_make_request,
|
|
"GET",
|
|
"/v1/customization/jobs",
|
|
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
|
|
)
|
|
|
|
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
|
def test_cancel_job(self, mock_make_request):
|
|
mock_make_request.return_value = {} # Empty response for successful cancellation
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
result = self.llama_stack_client.post_training.job.cancel(job_uuid=job_id)
|
|
assert result is None
|
|
|
|
# Verify the correct request was made
|
|
mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id}
|
|
)
|
|
|
|
@pytest.mark.asyncio
|
|
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
|
|
async def test_async_supervised_fine_tune(self, mock_make_request):
|
|
mock_make_request.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "created",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"dataset_id": "sample-basic-test",
|
|
"output_model": "default/job-1234",
|
|
}
|
|
|
|
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16, adapter_dropout=0.1)
|
|
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
training_job = await self.llama_stack_client.post_training.supervised_fine_tune_async(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
|
|
assert training_job["job_uuid"] == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
assert training_job["status"] == "created"
|
|
|
|
mock_make_request.assert_called_once()
|
|
call_args = mock_make_request.call_args
|
|
assert call_args[1]["method"] == "POST"
|
|
assert call_args[1]["path"] == "/v1/customization/jobs"
|
|
|
|
@pytest.mark.asyncio
|
|
@patch("aiohttp.ClientSession.post")
|
|
async def test_inference_with_fine_tuned_model(self, mock_post):
|
|
mock_response = MagicMock()
|
|
mock_response.status = 200
|
|
mock_response.json = AsyncMock(
|
|
return_value={
|
|
"id": "cmpl-123456",
|
|
"object": "text_completion",
|
|
"created": 1677858242,
|
|
"model": "job-1234",
|
|
"choices": [
|
|
{
|
|
"text": "The next GTC will take place in the middle of March, 2023.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
|
}
|
|
)
|
|
mock_post.return_value.__aenter__.return_value = mock_response
|
|
|
|
response = await self.llama_stack_client.inference.completion(
|
|
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
|
|
stream=False,
|
|
model_id="job-1234",
|
|
sampling_params={
|
|
"max_tokens": 128,
|
|
},
|
|
)
|
|
|
|
assert response["model"] == "job-1234"
|
|
assert response["choices"][0]["text"] == "The next GTC will take place in the middle of March, 2023."
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|