Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Charlie Doern d994305f0a
fix: remove disabled providers from model dump (#2784)
# What does this PR do?

currently when running `llama stack run --template starter...` the
__disabled__ providers, their models, etc are printed alongside the
enabled ones making the output really confusing

in server.py add a utility `remove_disabled_providers` which
post-processes the model_dump output to remove any dict with
`provider_id: __disabled__`

we also have `debug` logs printing the disabled providers, so I think
its safe to say that is the only indicator we need when using starter.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan

before (output truncated because it was huge):


```
...
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/sambanova/Llama-3.2-11B-Vision-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-3.2-11B-Vision-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/meta-llama/Llama-3.2-11B-Vision-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-3.2-11B-Vision-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/sambanova/Llama-3.2-90B-Vision-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-3.2-90B-Vision-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/meta-llama/Llama-3.2-90B-Vision-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-3.2-90B-Vision-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/sambanova/Llama-4-Scout-17B-16E-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-4-Scout-17B-16E-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/meta-llama/Llama-4-Scout-17B-16E-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-4-Scout-17B-16E-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/sambanova/Llama-4-Maverick-17B-128E-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-4-Maverick-17B-128E-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/meta-llama/Llama-4-Maverick-17B-128E-Instruct
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Llama-4-Maverick-17B-128E-Instruct
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/sambanova/Meta-Llama-Guard-3-8B
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Meta-Llama-Guard-3-8B
         - metadata: {}
           model_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/meta-llama/Llama-Guard-3-8B
           model_type: llm
           provider_id: __disabled__
           provider_model_id: sambanova/Meta-Llama-Guard-3-8B
         - metadata:
             embedding_dimension: 384
           model_id: all-MiniLM-L6-v2
           model_type: embedding
           provider_id: sentence-transformers
           provider_model_id: null
         providers:
           agents:
           - config:
               persistence_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/agents_store.db
                 type: sqlite
               responses_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/responses_store.db
                 type: sqlite
             provider_id: meta-reference
             provider_type: inline::meta-reference
           datasetio:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/huggingface_datasetio.db
                 type: sqlite
             provider_id: huggingface
             provider_type: remote::huggingface
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/localfs_datasetio.db
                 type: sqlite
             provider_id: localfs
             provider_type: inline::localfs
           eval:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/meta_reference_eval.db
                 type: sqlite
             provider_id: meta-reference
             provider_type: inline::meta-reference
           files:
           - config:
               metadata_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/files_metadata.db
                 type: sqlite
               storage_dir: /Users/charliedoern/.llama/distributions/starter/files
             provider_id: meta-reference-files
             provider_type: inline::localfs
           inference:
           - config:
               api_key: '********'
               base_url: https://api.cerebras.ai
             provider_id: __disabled__
             provider_type: remote::cerebras
           - config:
               url: http://localhost:11434
             provider_id: ollama
             provider_type: remote::ollama
           - config:
               api_token: '********'
               max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
               tls_verify: ${env.VLLM_TLS_VERIFY:=true}
               url: ${env.VLLM_URL}
             provider_id: __disabled__
             provider_type: remote::vllm
           - config:
               url: ${env.TGI_URL}
             provider_id: __disabled__
             provider_type: remote::tgi
           - config:
               api_token: '********'
               huggingface_repo: ${env.INFERENCE_MODEL}
             provider_id: __disabled__
             provider_type: remote::hf::serverless
           - config:
               api_token: '********'
               endpoint_name: ${env.INFERENCE_ENDPOINT_NAME}
             provider_id: __disabled__
             provider_type: remote::hf::endpoint
           - config:
               api_key: '********'
               url: https://api.fireworks.ai/inference/v1
             provider_id: __disabled__
             provider_type: remote::fireworks
           - config:
               api_key: '********'
               url: https://api.together.xyz/v1
             provider_id: __disabled__
             provider_type: remote::together
           - config: {}
             provider_id: __disabled__
             provider_type: remote::bedrock
           - config:
               api_token: '********'
               url: ${env.DATABRICKS_URL}
             provider_id: __disabled__
             provider_type: remote::databricks
           - config:
               api_key: '********'
               append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
               url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
             provider_id: __disabled__
             provider_type: remote::nvidia
           - config:
               api_token: '********'
               url: ${env.RUNPOD_URL:=}
             provider_id: __disabled__
             provider_type: remote::runpod
           - config:
               api_key: '********'
             provider_id: __disabled__
             provider_type: remote::openai
           - config:
               api_key: '********'
             provider_id: __disabled__
             provider_type: remote::anthropic
           - config:
               api_key: '********'
             provider_id: __disabled__
             provider_type: remote::gemini
           - config:
               api_key: '********'
               url: https://api.groq.com
             provider_id: __disabled__
             provider_type: remote::groq
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.fireworks.ai/inference/v1
             provider_id: __disabled__
             provider_type: remote::fireworks-openai-compat
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.llama.com/compat/v1/
             provider_id: __disabled__
             provider_type: remote::llama-openai-compat
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.together.xyz/v1
             provider_id: __disabled__
             provider_type: remote::together-openai-compat
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.groq.com/openai/v1
             provider_id: __disabled__
             provider_type: remote::groq-openai-compat
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.sambanova.ai/v1
             provider_id: __disabled__
             provider_type: remote::sambanova-openai-compat
           - config:
               api_key: '********'
               openai_compat_api_base: https://api.cerebras.ai/v1
             provider_id: __disabled__
             provider_type: remote::cerebras-openai-compat
           - config:
               api_key: '********'
               url: https://api.sambanova.ai/v1
             provider_id: __disabled__
             provider_type: remote::sambanova
           - config:
               api_key: '********'
               url: ${env.PASSTHROUGH_URL}
             provider_id: __disabled__
             provider_type: remote::passthrough
           - config: {}
             provider_id: sentence-transformers
             provider_type: inline::sentence-transformers
           post_training:
           - config:
               checkpoint_format: huggingface
               device: cpu
               distributed_backend: null
             provider_id: huggingface
             provider_type: inline::huggingface
           safety:
           - config:
               excluded_categories: []
             provider_id: llama-guard
             provider_type: inline::llama-guard
           scoring:
           - config: {}
             provider_id: basic
             provider_type: inline::basic
           - config: {}
             provider_id: llm-as-judge
             provider_type: inline::llm-as-judge
           - config:
               openai_api_key: '********'
             provider_id: braintrust
             provider_type: inline::braintrust
           telemetry:
           - config:
               otel_exporter_otlp_endpoint: null
               service_name: "\u200B"
               sinks: console,sqlite
               sqlite_db_path: /Users/charliedoern/.llama/distributions/starter/trace_store.db
             provider_id: meta-reference
             provider_type: inline::meta-reference
           tool_runtime:
           - config:
               api_key: '********'
               max_results: 3
             provider_id: brave-search
             provider_type: remote::brave-search
           - config:
               api_key: '********'
               max_results: 3
             provider_id: tavily-search
             provider_type: remote::tavily-search
           - config: {}
             provider_id: rag-runtime
             provider_type: inline::rag-runtime
           - config: {}
             provider_id: model-context-protocol
             provider_type: remote::model-context-protocol
           vector_io:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/faiss_store.db
                 type: sqlite
             provider_id: faiss
             provider_type: inline::faiss
           - config:
               db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
               kvstore:
                 db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec_registry.db
                 type: sqlite
             provider_id: __disabled__
             provider_type: inline::sqlite-vec
           - config:
               db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db
               kvstore:
                 db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/milvus_registry.db
                 type: sqlite
             provider_id: __disabled__
             provider_type: inline::milvus
           - config:
               url: ${env.CHROMADB_URL:=}
             provider_id: __disabled__
             provider_type: remote::chromadb
           - config:
               db: ${env.PGVECTOR_DB:=}
               host: ${env.PGVECTOR_HOST:=localhost}
               kvstore:
                 db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/pgvector_registry.db
                 type: sqlite
               password: '********'
               port: ${env.PGVECTOR_PORT:=5432}
               user: ${env.PGVECTOR_USER:=}
             provider_id: __disabled__
             provider_type: remote::pgvector
         scoring_fns: []
         server:
           auth: null
           host: null
           port: 8321
           quota: null
           tls_cafile: null
           tls_certfile: null
           tls_keyfile: null
         shields:
         - params: null
           provider_id: null
           provider_shield_id: ollama/__disabled__
           shield_id: __disabled__
         tool_groups:
         - args: null
           mcp_endpoint: null
           provider_id: tavily-search
           toolgroup_id: builtin::websearch
         - args: null
           mcp_endpoint: null
           provider_id: rag-runtime
           toolgroup_id: builtin::rag
         vector_dbs: []
         version: 2

```

after:

```
INFO     2025-07-16 13:00:32,604 __main__:448 server: Run configuration:
INFO     2025-07-16 13:00:32,606 __main__:450 server: apis:
         - agents
         - datasetio
         - eval
         - files
         - inference
         - post_training
         - safety
         - scoring
         - telemetry
         - tool_runtime
         - vector_io
         benchmarks: []
         datasets: []
         image_name: starter
         inference_store:
           db_path: /Users/charliedoern/.llama/distributions/starter/inference_store.db
           type: sqlite
         metadata_store:
           db_path: /Users/charliedoern/.llama/distributions/starter/registry.db
           type: sqlite
         models:
         - metadata: {}
           model_id: ollama/llama3.2:3b
           model_type: llm
           provider_id: ollama
           provider_model_id: llama3.2:3b
         - metadata:
             embedding_dimension: 384
           model_id: all-MiniLM-L6-v2
           model_type: embedding
           provider_id: sentence-transformers
         providers:
           agents:
           - config:
               persistence_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/agents_store.db
                 type: sqlite
               responses_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/responses_store.db
                 type: sqlite
             provider_id: meta-reference
             provider_type: inline::meta-reference
           datasetio:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/huggingface_datasetio.db
                 type: sqlite
             provider_id: huggingface
             provider_type: remote::huggingface
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/localfs_datasetio.db
                 type: sqlite
             provider_id: localfs
             provider_type: inline::localfs
           eval:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/meta_reference_eval.db
                 type: sqlite
             provider_id: meta-reference
             provider_type: inline::meta-reference
           files:
           - config:
               metadata_store:
                 db_path: /Users/charliedoern/.llama/distributions/starter/files_metadata.db
                 type: sqlite
               storage_dir: /Users/charliedoern/.llama/distributions/starter/files
             provider_id: meta-reference-files
             provider_type: inline::localfs
           inference:
           - config:
               url: http://localhost:11434
             provider_id: ollama
             provider_type: remote::ollama
           - config: {}
             provider_id: sentence-transformers
             provider_type: inline::sentence-transformers
           post_training:
           - config:
               checkpoint_format: huggingface
               device: cpu
             provider_id: huggingface
             provider_type: inline::huggingface
           safety:
           - config:
               excluded_categories: []
             provider_id: llama-guard
             provider_type: inline::llama-guard
           scoring:
           - config: {}
             provider_id: basic
             provider_type: inline::basic
           - config: {}
             provider_id: llm-as-judge
             provider_type: inline::llm-as-judge
           - config:
               openai_api_key: '********'
             provider_id: braintrust
             provider_type: inline::braintrust
           telemetry:
           - config:
               service_name: "\u200B"
               sinks: console,sqlite
               sqlite_db_path: /Users/charliedoern/.llama/distributions/starter/trace_store.db
             provider_id: meta-reference
             provider_type: inline::meta-reference
           tool_runtime:
           - config:
               api_key: '********'
               max_results: 3
             provider_id: brave-search
             provider_type: remote::brave-search
           - config:
               api_key: '********'
               max_results: 3
             provider_id: tavily-search
             provider_type: remote::tavily-search
           - config: {}
             provider_id: rag-runtime
             provider_type: inline::rag-runtime
           - config: {}
             provider_id: model-context-protocol
             provider_type: remote::model-context-protocol
           vector_io:
           - config:
               kvstore:
                 db_path: /Users/charliedoern/.llama/distributions/starter/faiss_store.db
                 type: sqlite
             provider_id: faiss
             provider_type: inline::faiss
         scoring_fns: []
         server:
           port: 8321
         shields: []
         tool_groups:
         - provider_id: tavily-search
           toolgroup_id: builtin::websearch
         - provider_id: rag-runtime
           toolgroup_id: builtin::rag
         vector_dbs: []
         version: 2
```

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-07-18 10:44:35 -07:00
.github chore: Add slekkala1 to codeowners (#2817) 2025-07-18 10:33:30 -07:00
docs docs: fix steps in the Quick Start Guide (#2800) 2025-07-18 09:08:46 -07:00
llama_stack fix: remove disabled providers from model dump (#2784) 2025-07-18 10:44:35 -07:00
scripts test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
tests test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
.coveragerc test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
.gitignore feat(ui): add infinite scroll pagination to chat completions/responses logs table (#2466) 2025-06-18 15:28:39 -07:00
.pre-commit-config.yaml chore: block asyncio marks in tests (#2744) 2025-07-17 16:33:30 -07:00
.readthedocs.yaml fix: build docs without requirements.txt (#2294) 2025-05-27 16:27:57 -07:00
CHANGELOG.md docs: Add recent releases to CHANGELOG.md (#2533) 2025-06-26 23:04:13 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix typo and link self loop for index.html#running-tests (#2777) 2025-07-16 07:09:44 -07:00
coverage.svg test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: remove dependencies.json (#2281) 2025-05-27 10:26:57 -07:00
pyproject.toml test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
README.md test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
requirements.txt feat: create dynamic model registration for OpenAI and Llama compat remote inference providers (#2745) 2025-07-16 12:49:38 -04:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests coverage badge

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"

llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list

API Provider Builder Environments Agents Inference VectorIO Safety Telemetry Post Training Eval DatasetIO
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted/Single Node
NVIDIA NIM Hosted/Single Node
ChromaDB Hosted/Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
WatsonX Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted
NVIDIA Hosted

Note

: Additional providers are available through external packages. See External Providers documentation.

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Starter Distribution llamastack/distribution-starter Guide
Meta Reference llamastack/distribution-meta-reference-gpu Guide
PostgreSQL llamastack/distribution-postgres-demo

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.