mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-23 00:27:26 +00:00
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> - Updates provider and distro codegen to handle the new format - Migrates provider and distro files to the new format ## Test Plan - Manual testing <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
91 lines
2.4 KiB
Text
91 lines
2.4 KiB
Text
---
|
|
description: |
|
|
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
|
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
|
That means you're not limited to storing vectors in memory or in a separate service.
|
|
|
|
## Features
|
|
Chroma supports:
|
|
- Store embeddings and their metadata
|
|
- Vector search
|
|
- Full-text search
|
|
- Document storage
|
|
- Metadata filtering
|
|
- Multi-modal retrieval
|
|
|
|
## Usage
|
|
|
|
To use Chrome in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use chroma.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install chroma using pip:
|
|
|
|
```bash
|
|
pip install chromadb
|
|
```
|
|
|
|
## Documentation
|
|
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
|
sidebar_label: Chromadb
|
|
title: inline::chromadb
|
|
---
|
|
|
|
# inline::chromadb
|
|
|
|
## Description
|
|
|
|
|
|
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
|
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
|
That means you're not limited to storing vectors in memory or in a separate service.
|
|
|
|
## Features
|
|
Chroma supports:
|
|
- Store embeddings and their metadata
|
|
- Vector search
|
|
- Full-text search
|
|
- Document storage
|
|
- Metadata filtering
|
|
- Multi-modal retrieval
|
|
|
|
## Usage
|
|
|
|
To use Chrome in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use chroma.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install chroma using pip:
|
|
|
|
```bash
|
|
pip install chromadb
|
|
```
|
|
|
|
## Documentation
|
|
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
|
|
|
|
|
|
|
## Configuration
|
|
|
|
| Field | Type | Required | Default | Description |
|
|
|-------|------|----------|---------|-------------|
|
|
| `db_path` | `<class 'str'>` | No | | |
|
|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
|
|
|
|
## Sample Configuration
|
|
|
|
```yaml
|
|
db_path: ${env.CHROMADB_PATH}
|
|
kvstore:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_inline_registry.db
|
|
```
|