mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-23 00:27:26 +00:00
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> - Updates provider and distro codegen to handle the new format - Migrates provider and distro files to the new format ## Test Plan - Manual testing <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
106 lines
3.2 KiB
Text
106 lines
3.2 KiB
Text
---
|
|
description: |
|
|
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
|
|
allows you to store and query vectors directly in memory.
|
|
That means you'll get fast and efficient vector retrieval.
|
|
|
|
## Features
|
|
|
|
- Lightweight and easy to use
|
|
- Fully integrated with Llama Stack
|
|
- GPU support
|
|
- **Vector search** - FAISS supports pure vector similarity search using embeddings
|
|
|
|
## Search Modes
|
|
|
|
**Supported:**
|
|
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
|
|
|
|
**Not Supported:**
|
|
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
|
|
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
|
|
|
|
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
|
|
|
|
## Usage
|
|
|
|
To use Faiss in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use Faiss.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install Faiss using pip:
|
|
|
|
```bash
|
|
pip install faiss-cpu
|
|
```
|
|
## Documentation
|
|
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
|
|
more details about Faiss in general.
|
|
sidebar_label: Faiss
|
|
title: inline::faiss
|
|
---
|
|
|
|
# inline::faiss
|
|
|
|
## Description
|
|
|
|
|
|
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
|
|
allows you to store and query vectors directly in memory.
|
|
That means you'll get fast and efficient vector retrieval.
|
|
|
|
## Features
|
|
|
|
- Lightweight and easy to use
|
|
- Fully integrated with Llama Stack
|
|
- GPU support
|
|
- **Vector search** - FAISS supports pure vector similarity search using embeddings
|
|
|
|
## Search Modes
|
|
|
|
**Supported:**
|
|
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
|
|
|
|
**Not Supported:**
|
|
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
|
|
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
|
|
|
|
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
|
|
|
|
## Usage
|
|
|
|
To use Faiss in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use Faiss.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install Faiss using pip:
|
|
|
|
```bash
|
|
pip install faiss-cpu
|
|
```
|
|
## Documentation
|
|
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
|
|
more details about Faiss in general.
|
|
|
|
|
|
## Configuration
|
|
|
|
| Field | Type | Required | Default | Description |
|
|
|-------|------|----------|---------|-------------|
|
|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
|
|
|
|
## Sample Configuration
|
|
|
|
```yaml
|
|
kvstore:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db
|
|
```
|