Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / discover-tests (push) Successful in 12s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 15s
Python Package Build Test / build (3.12) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 23s
Python Package Build Test / build (3.13) (push) Failing after 17s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 29s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 25s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 28s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 29s
Unit Tests / unit-tests (3.12) (push) Failing after 20s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 12s
Test External API and Providers / test-external (venv) (push) Failing after 22s
Unit Tests / unit-tests (3.13) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 24s
Update ReadTheDocs / update-readthedocs (push) Failing after 38s
Pre-commit / pre-commit (push) Successful in 1m53s
Add complete batches API implementation with protocol, providers, and tests: Core Infrastructure: - Add batches API protocol using OpenAI Batch types directly - Add Api.batches enum value and protocol mapping in resolver - Add OpenAI "batch" file purpose support - Include proper error handling (ConflictError, ResourceNotFoundError) Reference Provider: - Add ReferenceBatchesImpl with full CRUD operations (create, retrieve, cancel, list) - Implement background batch processing with configurable concurrency - Add SQLite KVStore backend for persistence - Support /v1/chat/completions endpoint with request validation Comprehensive Test Suite: - Add unit tests for provider implementation with validation - Add integration tests for end-to-end batch processing workflows - Add error handling tests for validation, malformed inputs, and edge cases Configuration: - Add max_concurrent_batches and max_concurrent_requests_per_batch options - Add provider documentation with sample configurations Test with - ``` $ uv run llama stack build --image-type venv --providers inference=YOU_PICK,files=inline::localfs,batches=inline::reference --run & $ LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/unit/providers/batches tests/integration/batches --text-model YOU_PICK ``` addresses #3066 |
||
---|---|---|
.. | ||
agents | ||
batches | ||
datasets | ||
eval | ||
files | ||
fixtures | ||
inference | ||
inspect | ||
non_ci/responses | ||
post_training | ||
providers | ||
recordings | ||
safety | ||
scoring | ||
telemetry | ||
test_cases | ||
tool_runtime | ||
tools | ||
vector_io | ||
__init__.py | ||
conftest.py | ||
README.md |
Llama Stack Integration Tests
We use pytest
for parameterizing and running tests. You can see all options with:
cd tests/integration
# this will show a long list of options, look for "Custom options:"
pytest --help
Here are the most important options:
--stack-config
: specify the stack config to use. You have four ways to point to a stack:server:<config>
- automatically start a server with the given config (e.g.,server:fireworks
). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.server:<config>:<port>
- same as above but with a custom port (e.g.,server:together:8322
)- a URL which points to a Llama Stack distribution server
- a template (e.g.,
starter
) or a path to arun.yaml
file - a comma-separated list of api=provider pairs, e.g.
inference=fireworks,safety=llama-guard,agents=meta-reference
. This is most useful for testing a single API surface.
--env
: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
--text-model
: comma-separated list of text models.--vision-model
: comma-separated list of vision models.--embedding-model
: comma-separated list of embedding models.--safety-shield
: comma-separated list of safety shields.--judge-model
: comma-separated list of judge models.--embedding-dimension
: output dimensionality of the embedding model to use for testing. Default: 384
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.
Examples
Testing against a Server
Run all text inference tests by auto-starting a server with the fireworks
config:
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=server:fireworks \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run tests with auto-server startup on a custom port:
pytest -s -v tests/integration/inference/ \
--stack-config=server:together:8322 \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run multiple test suites with auto-server (eliminates manual server management):
# Auto-start server and run all integration tests
export FIREWORKS_API_KEY=<your_key>
pytest -s -v tests/integration/inference/ tests/integration/safety/ tests/integration/agents/ \
--stack-config=server:fireworks \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Testing with Library Client
Run all text inference tests with the starter
distribution using the together
provider:
ENABLE_TOGETHER=together pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=starter \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Run all text inference tests with the starter
distribution using the together
provider and meta-llama/Llama-3.1-8B-Instruct
:
ENABLE_TOGETHER=together pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=starter \
--text-model=meta-llama/Llama-3.1-8B-Instruct
Running all inference tests for a number of models using the together
provider:
TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
ENABLE_TOGETHER=together
export TOGETHER_API_KEY=<together_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=together \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks
for inference):
export FIREWORKS_API_KEY=<fireworks_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=inference=fireworks \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
Running Vector IO tests for a number of embedding models:
EMBEDDING_MODELS=all-MiniLM-L6-v2
pytest -s -v tests/integration/vector_io/ \
--stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
--embedding-model=$EMBEDDING_MODELS