llama-stack-mirror/llama_stack/providers/inline/instrumentation/otel/otel.py

151 lines
6.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from fastapi import FastAPI
from opentelemetry import metrics, trace
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
BatchSpanProcessor,
SimpleSpanProcessor,
)
from llama_stack.core.instrumentation import InstrumentationProvider
from llama_stack.log import get_logger
from .config import OTelConfig
from .middleware import MetricsSpanExporter, StreamingMetricsMiddleware
logger = get_logger(name=__name__, category="instrumentation::otel")
class OTelInstrumentationProvider(InstrumentationProvider):
"""OpenTelemetry instrumentation provider."""
provider: str = "otel" # Discriminator value
def model_post_init(self, __context):
"""Initialize OpenTelemetry after Pydantic validation."""
# Provide default config if missing and validate type
if getattr(self, "config", None) is None:
self.config = OTelConfig()
assert isinstance(self.config, OTelConfig) # Type hint for IDE/linter
# Warn if OTLP endpoints not configured
if not os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT"):
if not os.environ.get("OTEL_EXPORTER_OTLP_TRACES_ENDPOINT"):
logger.warning("OTEL_EXPORTER_OTLP_TRACES_ENDPOINT not set. Traces will not be exported.")
if not os.environ.get("OTEL_EXPORTER_OTLP_METRICS_ENDPOINT"):
logger.warning("OTEL_EXPORTER_OTLP_METRICS_ENDPOINT not set. Metrics will not be exported.")
resource_attributes = {}
if self.config.service_name:
resource_attributes["service.name"] = self.config.service_name
# Create resource with service name
resource = Resource.create(resource_attributes)
# Configure the tracer provider (always, since llama stack run spawns subprocess without opentelemetry-instrument)
tracer_provider = TracerProvider(resource=resource)
trace.set_tracer_provider(tracer_provider)
# Configure OTLP span exporter
otlp_span_exporter = OTLPSpanExporter()
if self.config.span_processor == "batch":
tracer_provider.add_span_processor(BatchSpanProcessor(otlp_span_exporter))
else:
tracer_provider.add_span_processor(SimpleSpanProcessor(otlp_span_exporter))
# Configure meter provider with OTLP exporter for metrics
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
meter_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
metrics.set_meter_provider(meter_provider)
logger.info("Initialized OpenTelemetry Instrumentation")
logger.debug(f"OpenTelemetry Instrumentation configuration: {self.config}")
def fastapi_middleware(self, app: FastAPI):
"""Inject OpenTelemetry middleware into FastAPI."""
meter = metrics.get_meter("llama_stack.http.server")
# HTTP Metrics following OTel semantic conventions
# https://opentelemetry.io/docs/specs/semconv/http/http-metrics/
request_duration = meter.create_histogram(
"http.server.request.duration",
unit="ms",
description="Duration of HTTP requests (time-to-first-byte for streaming)",
)
streaming_duration = meter.create_histogram(
"http.server.streaming.duration",
unit="ms",
description="Total duration of streaming responses (from start to stream completion)",
)
request_count = meter.create_counter(
"http.server.request.count", unit="requests", description="Total number of HTTP requests"
)
streaming_requests = meter.create_counter(
"http.server.streaming.count", unit="requests", description="Number of streaming requests"
)
# Hook to enrich spans and record initial metrics
def server_request_hook(span, scope):
"""
Called by FastAPIInstrumentor for each request.
This only reads from scope (ASGI dict), never touches request body.
Safe to use without interfering with body parsing.
"""
method = scope.get("method", "UNKNOWN")
path = scope.get("path", "/")
# Add custom attributes
span.set_attribute("service.component", "llama-stack-api")
span.set_attribute("http.request", path)
span.set_attribute("http.method", method)
attributes = {
"http.request": path,
"http.method": method,
"trace_id": span.attributes.get("trace_id", ""),
"span_id": span.attributes.get("span_id", ""),
}
request_count.add(1, attributes)
logger.debug(f"server_request_hook: recorded request_count for {method} {path}, attributes={attributes}")
# NOTE: This is called BEFORE routes are added to the app
# FastAPIInstrumentor.instrument_app() patches build_middleware_stack(),
# which will be called on first request (after routes are added), so hooks should work.
logger.debug("Instrumenting FastAPI (routes will be added later)")
FastAPIInstrumentor.instrument_app(
app,
server_request_hook=server_request_hook,
)
logger.debug(f"FastAPI instrumented: {getattr(app, '_is_instrumented_by_opentelemetry', False)}")
# Add pure ASGI middleware for streaming metrics (always add, regardless of instrumentation)
app.add_middleware(StreamingMetricsMiddleware)
# Add metrics span processor
provider = trace.get_tracer_provider()
if isinstance(provider, TracerProvider):
metrics_exporter = MetricsSpanExporter(
request_duration=request_duration,
streaming_duration=streaming_duration,
streaming_requests=streaming_requests,
request_count=request_count,
)
provider.add_span_processor(BatchSpanProcessor(metrics_exporter))