llama-stack-mirror/llama_stack/providers/tests/memory/fixtures.py
Vladimir Ivic e2d1b712e2 Testing - Memory provider fakes
Summary:
Implementing Memory provider fakes as discussed in this draft https://github.com/meta-llama/llama-stack/pull/490#issuecomment-2492877393.

High level changes:
* Fake provider is specified via the "fake" mark
* Test config will setup a fake fixture for the run of the test
* Test resolver checks fixtures and upon finding a fake provider it injects InlineProviderSpec for fake provider
* Fake provider gets resolved through path/naming convention
* Fake provider implementaion is contained to the tests/ directory and implements stubs and method fakes with minimal functionality to simulate real provider

Instructins to creating a fake
* Create the "fakes" module inside the provider test directory
* Inside the module implement `get_provider_impl` that will return fake implementation object
* Name the fake implementation class to match the fake provider id (e.g. memory_fake -> MemoryFakeImpl)
  * Same rule for the config (e.g. memory_fake -> MemoryFakeConfig)
* Add fake fixture (in the fixtures.py) and setup methods stubs there

Test Plan:
Run memory tests
```
pytest llama_stack/providers/tests/memory/test_memory.py -m "fake" -v -s --tb=short

====================================================================================================== test session starts ======================================================================================================
platform darwin -- Python 3.11.10, pytest-8.3.3, pluggy-1.5.0 -- /opt/homebrew/Caskroom/miniconda/base/envs/llama-stack/bin/python
cachedir: .pytest_cache
rootdir: /Users/vivic/Code/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.24.0, anyio-4.6.2.post1
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 18 items / 15 deselected / 3 selected

llama_stack/providers/tests/memory/test_memory.py::TestMemory::test_banks_list[fake] PASSED
llama_stack/providers/tests/memory/test_memory.py::TestMemory::test_banks_register[fake] PASSED
llama_stack/providers/tests/memory/test_memory.py::TestMemory::test_query_documents[fake] The scores are: [0.5]
PASSED

========================================================================================= 3 passed, 15 deselected, 10 warnings in 0.46s =========================================================================================

```
2024-11-25 10:24:53 -08:00

153 lines
4.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import tempfile
import pytest
import pytest_asyncio
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.distribution.datatypes import Api, Provider, RemoteProviderConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore import SqliteKVStoreConfig
from ..conftest import ProviderFixture, remote_stack_fixture
from ..env import get_env_or_fail
from .fakes import InlineMemoryFakeImpl
@pytest.fixture(scope="session")
def memory_fake() -> ProviderFixture:
InlineMemoryFakeImpl.stub_method(
method_name="query_documents",
return_value_matchers={
"programming language": QueryDocumentsResponse(
chunks=[Chunk(content="Python", token_count=1, document_id="")],
scores=[0.1],
),
"AI and brain-inspired computing": QueryDocumentsResponse(
chunks=[
Chunk(content="neural networks", token_count=2, document_id="")
],
scores=[0.1],
),
"computer": QueryDocumentsResponse(
chunks=[
Chunk(content="test-chunk-1", token_count=1, document_id=""),
Chunk(content="test-chunk-2", token_count=1, document_id=""),
],
scores=[0.1, 0.5],
),
"quantum computing": QueryDocumentsResponse(
chunks=[Chunk(content="Python", token_count=1, document_id="")],
scores=[0.5],
),
},
)
fixture = ProviderFixture(
providers=[
Provider(
provider_id="inline_memory_fake",
provider_type="test::fake",
config={},
)
],
)
return fixture
@pytest.fixture(scope="session")
def memory_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def memory_faiss() -> ProviderFixture:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
return ProviderFixture(
providers=[
Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig(
kvstore=SqliteKVStoreConfig(db_path=temp_file.name).model_dump(),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def memory_pgvector() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="pgvector",
provider_type="remote::pgvector",
config=PGVectorConfig(
host=os.getenv("PGVECTOR_HOST", "localhost"),
port=os.getenv("PGVECTOR_PORT", 5432),
db=get_env_or_fail("PGVECTOR_DB"),
user=get_env_or_fail("PGVECTOR_USER"),
password=get_env_or_fail("PGVECTOR_PASSWORD"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def memory_weaviate() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="weaviate",
provider_type="remote::weaviate",
config=WeaviateConfig().model_dump(),
)
],
provider_data=dict(
weaviate_api_key=get_env_or_fail("WEAVIATE_API_KEY"),
weaviate_cluster_url=get_env_or_fail("WEAVIATE_CLUSTER_URL"),
),
)
@pytest.fixture(scope="session")
def memory_chroma() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="chroma",
provider_type="remote::chromadb",
config=RemoteProviderConfig(
host=get_env_or_fail("CHROMA_HOST"),
port=get_env_or_fail("CHROMA_PORT"),
).model_dump(),
)
]
)
MEMORY_FIXTURES = ["fake", "faiss", "pgvector", "weaviate", "remote", "chroma"]
@pytest_asyncio.fixture(scope="session")
async def memory_stack(request):
fixture_name = request.param
fixture = request.getfixturevalue(f"memory_{fixture_name}")
test_stack = await construct_stack_for_test(
[Api.memory],
{"memory": fixture.providers},
fixture.provider_data,
)
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]