llama-stack-mirror/llama_stack/models/llama/llama3/generation.py

447 lines
16 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
import json
import os
import sys
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Callable, Generator, List, Optional
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
get_model_parallel_rank,
initialize_model_parallel,
model_parallel_is_initialized,
)
from termcolor import cprint
from ..datatypes import RawContent, RawMessage, StopReason, ToolPromptFormat
from .args import ModelArgs
from .chat_format import ChatFormat, LLMInput
from .model import Transformer
from .tokenizer import Tokenizer
@dataclass
class CompletionPrediction:
generation: str
decoded_tokens: Optional[List[str]] = None
logprobs: Optional[List[List[float]]] = None
@dataclass
class ChatPrediction:
generation: RawMessage
decoded_tokens: Optional[List[str]] = None
logprobs: Optional[List[List[float]]] = None
@dataclass
class TokenResult:
token: int
text: str
logprobs: Optional[List[float]] = None
# TODO: make this completely parallel to the llama4 generation.py file and share common code
# from llama-models also
class Llama3:
@staticmethod
def build(
ckpt_dir: str,
max_seq_len: int,
max_batch_size: int,
world_size: Optional[int] = None,
tokenizer_path: Optional[str] = None,
seed: int = 1,
device: str = "cuda",
):
device = torch.device(device)
if (
device.type == "cuda"
and not torch.cuda.is_available()
or device.type == "xpu"
and not torch.xpu.is_available()
):
raise RuntimeError(f"PyTorch backend for {device.type} device type is not available")
if not torch.distributed.is_initialized():
if device.type == "cuda":
torch.distributed.init_process_group("nccl")
else:
torch.distributed.init_process_group("gloo")
if not model_parallel_is_initialized():
if world_size is None:
world_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(world_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if device.type == "cuda":
torch.cuda.set_device(local_rank)
elif device.type == "xpu":
torch.xpu.set_device(local_rank)
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
assert world_size == len(checkpoints), (
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
)
ckpt_path = checkpoints[get_model_parallel_rank()]
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
if tokenizer_path:
tokenizer = Tokenizer(model_path=tokenizer_path)
else:
tokenizer = Tokenizer.get_instance()
assert model_args.vocab_size == tokenizer.n_words
torch.set_default_device(device)
if device.type == "cuda":
if torch.cuda.is_bf16_supported():
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.half)
elif device.type == "xpu":
if torch.xpu.is_bf16_supported():
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_dtype(torch.half)
else:
torch.set_default_dtype(torch.half)
if model_args.vision_chunk_size > 0:
from .multimodal.model import CrossAttentionTransformer
model = CrossAttentionTransformer(model_args)
model.setup_cache(model_args.max_batch_size, torch.get_default_dtype())
else:
model = Transformer(model_args)
model.load_state_dict(checkpoint, strict=True)
model.to(device)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama(model, tokenizer, model_args)
def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs):
self.args = args
self.model = model
self.tokenizer = tokenizer
self.formatter = ChatFormat(tokenizer)
@torch.inference_mode()
def generate(
self,
model_input: LLMInput,
max_gen_len: int,
temperature: float = 0.6,
top_p: float = 0.9,
logprobs: bool = False,
echo: bool = False,
print_model_input: bool = False,
logits_processor: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> Generator:
params = self.model.params
if print_model_input:
tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in model_input.tokens]
cprint(
"Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n",
"red",
)
prompt_tokens = [model_input.tokens]
bsz = 1
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
if max_prompt_len >= params.max_seq_len:
cprint(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", "red")
return
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
is_vision = not isinstance(self.model, Transformer)
if is_vision:
images = model_input.vision.images if model_input.vision is not None else []
mask = model_input.vision.mask if model_input.vision is not None else []
# the method works for bsz > 1 so add a batch dimension
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
batch_images=[images],
batch_masks=[mask],
total_len=total_len,
)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
for k, t in enumerate(prompt_tokens):
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
prev_pos = 0
eos_reached = torch.tensor([False] * bsz)
input_text_mask = tokens != pad_id
if echo:
for i, t in enumerate(model_input.tokens):
yield TokenResult(
token=t,
text=self.tokenizer.decode([t]),
logprobs=(token_logprobs[0, i : i + 1].tolist() if logprobs else None),
)
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
for cur_pos in range(min_prompt_len, total_len):
if is_vision:
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
text_only_inference = model_input.vision is None
logits = self.model.forward(
position_ids,
tokens,
cross_attention_masks,
full_text_row_masked_out_mask,
xattn_caches,
text_only_inference,
)
else:
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if logits_processor is not None:
logits = logits_processor(tokens[:, :cur_pos], logits)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# only replace token if prompt has already been generated
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
target = tokens[:, prev_pos + 1 : cur_pos + 1]
if is_vision:
# the logits space (num_classes) is designed to never contain a media_token
# however our input token stream does contain them. we need to nuke them here
# or else the CUDA kernels will crash with an illegal memory access
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
masks = [target.eq(t) for t in vision_tokens]
if len(masks) > 1:
mask = torch.logical_or(*masks)
else:
mask = masks[0]
target[mask] = 0
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=target,
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
yield TokenResult(
token=next_token[0].item(),
text=self.tokenizer.decode(next_token.tolist()),
logprobs=(token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None),
)
prev_pos = cur_pos
if all(eos_reached):
break
def text_completion(
self,
content: RawContent,
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
logprobs: bool = False,
echo: bool = False,
) -> CompletionPrediction:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
max_gen_len = self.model.params.max_seq_len - 1
model_input = self.formatter.encode_content(content)
tokens = []
token_logprobs = []
decoded_tokens = []
for result in self.generate(
model_input=model_input,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
):
tokens.append(result.token)
if logprobs:
decoded_tokens.append(result.text)
token_logprobs.append(result.logprobs)
generation = self.tokenizer.decode(tokens)
if logprobs:
return CompletionPrediction(
generation=generation,
logprobs=token_logprobs,
decoded_tokens=decoded_tokens,
)
return CompletionPrediction(generation=generation)
def chat_completion(
self,
messages: List[RawMessage],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
logprobs: bool = False,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
echo: bool = False,
) -> ChatPrediction:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
max_gen_len = self.model.params.max_seq_len - 1
tokens = []
token_logprobs = []
decoded_tokens = []
stop_reason = None
for result in self.generate(
model_input=self.formatter.encode_dialog_prompt(messages, tool_prompt_format),
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
):
tokens.append(result.token)
if result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
elif result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
if logprobs:
decoded_tokens.append(result.text)
token_logprobs.append(result.logprobs)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
message = self.formatter.decode_assistant_message(tokens, stop_reason)
if logprobs:
return ChatPrediction(
generation=message,
logprobs=token_logprobs,
decoded_tokens=decoded_tokens,
)
return ChatPrediction(generation=message)
def chat_completion_raw(
self,
messages: List[RawMessage],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
) -> List[int]:
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
max_gen_len = self.model.params.max_seq_len - 1
output_tokens = []
model_input = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
input_tokens = model_input.tokens
for result in self.generate(
model_input=model_input,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=False,
):
output_tokens.append(result.token)
return input_tokens, output_tokens
def text_completion_raw(
self,
content: RawContent,
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
):
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
max_gen_len = self.model.params.max_seq_len - 1
model_input = self.formatter.encode_content(content)
input_tokens = model_input.tokens
output_tokens = []
for result in self.generate(
model_input=model_input,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=False,
):
output_tokens.append(result.token)
return input_tokens, output_tokens
def sample_top_p(probs, p):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token