llama-stack-mirror/tests/integration
ehhuang f44eb935c4
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 35s
API Conformance Tests / check-schema-compatibility (push) Successful in 6s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Pre-commit / pre-commit (push) Successful in 1m19s
chore: simplify authorized sqlstore (#3496)
# What does this PR do?

This PR is generated with AI and reviewed by me.

Refactors the AuthorizedSqlStore class to store the access policy as an
instance variable rather than passing it as a parameter to each method
call. This simplifies the API.

# Test Plan

existing tests
2025-09-19 16:13:56 -07:00
..
agents fix(ci, tests): ensure uv environments in CI are kosher, record tests (#3193) 2025-08-18 17:02:24 -07:00
batches feat(batches, completions): add /v1/completions support to /v1/batches (#3309) 2025-09-05 11:59:57 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
files feat(files, s3, expiration): add expires_after support to S3 files provider (#3283) 2025-08-29 16:17:24 -07:00
fixtures feat: Remove initialize() Method from LlamaStackAsLibrary (#2979) 2025-08-21 15:59:04 -07:00
inference feat: add embedding and dynamic model support to Together inference adapter (#3458) 2025-09-16 11:53:41 -07:00
inspect chore: default to pytest asyncio-mode=auto (#2730) 2025-07-11 13:00:24 -07:00
post_training chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) 2025-08-20 07:15:35 -04:00
providers chore: simplify authorized sqlstore (#3496) 2025-09-19 16:13:56 -07:00
recordings chore: update the ollama inference impl to use OpenAIMixin for openai-compat functions (#3395) 2025-09-18 13:09:57 +02:00
responses feat(tests): introduce a test "suite" concept to encompass dirs, options (#3339) 2025-09-05 13:58:49 -07:00
safety feat: Code scanner Provider impl for moderations api (#3100) 2025-08-18 14:15:40 -07:00
scoring feat: create HTTP DELETE API endpoints to unregister ScoringFn and Benchmark resources in Llama Stack (#3371) 2025-09-15 12:43:38 -07:00
telemetry chore: telemetry test (#3405) 2025-09-10 13:19:36 -07:00
test_cases feat: switch to async completion in LiteLLM OpenAI mixin (#3029) 2025-08-03 12:08:56 -07:00
tool_runtime chore: Updating documentation, adding exception handling for Vector Stores in RAG Tool, more tests on migration, and migrate off of inference_api for context_retriever for RAG (#3367) 2025-09-11 14:20:11 +02:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io feat!: Migrate Vector DB IDs to Vector Store IDs (breaking change) (#3253) 2025-09-05 15:40:34 +02:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py feat(tests): migrate to global "setups" system for test configuration (#3390) 2025-09-09 15:50:56 -07:00
README.md feat(tests): migrate to global "setups" system for test configuration (#3390) 2025-09-09 15:50:56 -07:00
suites.py feat: add embedding and dynamic model support to Together inference adapter (#3458) 2025-09-16 11:53:41 -07:00

Integration Testing Guide

Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.

Quick Start

# Run all integration tests with existing recordings
uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Configuration Options

You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have four ways to point to a stack:
    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=ollama,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Suites and Setups

  • --suite: single named suite that narrows which tests are collected.
  • Available suites:
    • base: collects most tests (excludes responses and post_training)
    • responses: collects tests under tests/integration/responses (needs strong tool-calling models)
    • vision: collects only tests/integration/inference/test_vision_inference.py
  • --setup: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
    • Available setups:
      • ollama: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
      • vllm: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
      • gpt: OpenAI GPT models for high-quality responses (uses gpt-4o)
      • claude: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)

Examples

# Fast responses run with a strong tool-calling model
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt

# Fast single-file vision run with Ollama defaults
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama

# Base suite with VLLM for performance
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm

# Override a default from setup
pytest -s -v tests/integration --stack-config=server:starter \
  --suite=responses --setup=gpt --embedding-model=text-embedding-3-small

Examples

Testing against a Server

Run all text inference tests by auto-starting a server with the starter config:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=server:starter \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Run tests with auto-server startup on a custom port:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/ \
   --stack-config=server:starter:8322 \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Testing with Library Client

The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.

You can do this by simply using --stack-config=starter instead of --stack-config=server:starter.

Using ad-hoc distributions

Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the --stack-config option, e.g. inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference.

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Another example: Running Vector IO tests for embedding models:

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Recording Modes

The testing system supports three modes controlled by environment variables:

REPLAY Mode (Default)

Uses cached responses instead of making API calls:

pytest tests/integration/

RECORD Mode

Captures API interactions for later replay:

pytest tests/integration/inference/test_new_feature.py --inference-mode=record

LIVE Mode

Tests make real API calls (but not recorded):

pytest tests/integration/ --inference-mode=live

By default, the recording directory is tests/integration/recordings. You can override this by setting the LLAMA_STACK_TEST_RECORDING_DIR environment variable.

Managing Recordings

Viewing Recordings

# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"

# Inspect specific response
cat recordings/responses/abc123.json | jq '.'

Re-recording Tests

Use the automated workflow script for easier re-recording:

./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"

See the main testing guide for full details.

Local Re-recording

# Re-record specific tests
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record

Note that when re-recording tests, you must use a Stack pointing to a server (i.e., server:starter). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.

Writing Tests

Basic Test Pattern

def test_basic_completion(llama_stack_client, text_model_id):
    response = llama_stack_client.inference.completion(
        model_id=text_model_id,
        content=CompletionMessage(role="user", content="Hello"),
    )

    # Test structure, not AI output quality
    assert response.completion_message is not None
    assert isinstance(response.completion_message.content, str)
    assert len(response.completion_message.content) > 0

Provider-Specific Tests

def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
    if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
        pytest.skip(f"Model {embedding_model_id} doesn't support task types")

    query_response = llama_stack_client.inference.embeddings(
        model_id=embedding_model_id,
        contents=["What is machine learning?"],
        task_type="query",
    )

    assert query_response.embeddings is not None