mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-16 18:32:40 +00:00
406 lines
14 KiB
Python
406 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
|
|
from io import StringIO
|
|
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Set, Tuple
|
|
|
|
import jinja2
|
|
import yaml
|
|
from pydantic import BaseModel, Field
|
|
|
|
from rich.console import Console
|
|
from rich.table import Table
|
|
|
|
from llama_stack.distribution.datatypes import (
|
|
Api,
|
|
BuildConfig,
|
|
DistributionSpec,
|
|
KVStoreConfig,
|
|
ModelInput,
|
|
Provider,
|
|
ShieldInput,
|
|
StackRunConfig,
|
|
)
|
|
from llama_stack.distribution.distribution import get_provider_registry
|
|
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
|
from llama_stack.providers.remote.inference.vllm.config import (
|
|
VLLMInferenceAdapterConfig,
|
|
)
|
|
from llama_stack.providers.utils.docker.service_config import DockerComposeServiceConfig
|
|
|
|
|
|
class DistributionTemplate(BaseModel):
|
|
"""
|
|
Represents a Llama Stack distribution instance that can generate configuration
|
|
and documentation files.
|
|
"""
|
|
|
|
name: str
|
|
description: str
|
|
providers: Dict[str, List[str]]
|
|
run_config_overrides: Dict[str, List[Provider]] = Field(default_factory=dict)
|
|
compose_config_overrides: Dict[str, Dict[str, DockerComposeServiceConfig]] = Field(
|
|
default_factory=dict
|
|
)
|
|
|
|
default_models: List[ModelInput]
|
|
default_shields: Optional[List[ShieldInput]] = None
|
|
|
|
# Optional configuration
|
|
metadata_store: Optional[KVStoreConfig] = None
|
|
docker_compose_env_vars: Optional[Dict[str, Tuple[str, str]]] = None
|
|
docker_image: Optional[str] = None
|
|
|
|
@property
|
|
def distribution_spec(self) -> DistributionSpec:
|
|
return DistributionSpec(
|
|
description=self.description,
|
|
docker_image=self.docker_image,
|
|
providers=self.providers,
|
|
)
|
|
|
|
def build_config(self) -> BuildConfig:
|
|
return BuildConfig(
|
|
name=self.name,
|
|
distribution_spec=self.distribution_spec,
|
|
image_type="conda", # default to conda, can be overridden
|
|
)
|
|
|
|
def run_config(self) -> StackRunConfig:
|
|
provider_registry = get_provider_registry()
|
|
|
|
provider_configs = {}
|
|
for api_str, provider_types in self.providers.items():
|
|
if providers := self.run_config_overrides.get(api_str):
|
|
provider_configs[api_str] = providers
|
|
continue
|
|
|
|
provider_type = provider_types[0]
|
|
provider_id = provider_type.split("::")[-1]
|
|
|
|
api = Api(api_str)
|
|
if provider_type not in provider_registry[api]:
|
|
raise ValueError(
|
|
f"Unknown provider type: {provider_type} for API: {api_str}"
|
|
)
|
|
|
|
config_class = provider_registry[api][provider_type].config_class
|
|
assert (
|
|
config_class is not None
|
|
), f"No config class for provider type: {provider_type} for API: {api_str}"
|
|
|
|
config_class = instantiate_class_type(config_class)
|
|
if hasattr(config_class, "sample_run_config"):
|
|
config = config_class.sample_run_config()
|
|
else:
|
|
config = {}
|
|
|
|
provider_configs[api_str] = [
|
|
Provider(
|
|
provider_id=provider_id,
|
|
provider_type=provider_type,
|
|
config=config,
|
|
)
|
|
]
|
|
|
|
# Get unique set of APIs from providers
|
|
apis: Set[str] = set(self.providers.keys())
|
|
|
|
return StackRunConfig(
|
|
image_name=self.name,
|
|
docker_image=self.docker_image,
|
|
built_at=datetime.now(),
|
|
apis=list(apis),
|
|
providers=provider_configs,
|
|
metadata_store=self.metadata_store,
|
|
models=self.default_models,
|
|
shields=self.default_shields or [],
|
|
)
|
|
|
|
def docker_compose_config(self) -> Dict[str, Any]:
|
|
services = {}
|
|
provider_registry = get_provider_registry()
|
|
|
|
# Add provider services based on their sample_compose_config
|
|
for api_str, api_providers in self.providers.items():
|
|
if overrides := self.compose_config_overrides.get(api_str):
|
|
services |= overrides
|
|
continue
|
|
|
|
# only look at the first provider to get the compose config for now
|
|
# we may want to use `docker compose profiles` in the future
|
|
provider_type = api_providers[0]
|
|
provider_id = provider_type.split("::")[-1]
|
|
api = Api(api_str)
|
|
if provider_type not in provider_registry[api]:
|
|
raise ValueError(
|
|
f"Unknown provider type: {provider_type} for API: {api_str}"
|
|
)
|
|
|
|
config_class = provider_registry[api][provider_type].config_class
|
|
assert (
|
|
config_class is not None
|
|
), f"No config class for provider type: {provider_type} for API: {api_str}"
|
|
|
|
config_class = instantiate_class_type(config_class)
|
|
if not hasattr(config_class, "sample_docker_compose_config"):
|
|
continue
|
|
|
|
compose_config = config_class.sample_docker_compose_config()
|
|
services[provider_id] = compose_config
|
|
|
|
port = "${LLAMASTACK_PORT:-5001}"
|
|
# Add main llamastack service
|
|
llamastack_config = DockerComposeServiceConfig(
|
|
image=f"llamastack/distribution-{self.name}:latest",
|
|
depends_on=list(services.keys()),
|
|
volumes=[
|
|
"~/.llama:/root/.llama",
|
|
f"~/local/llama-stack/distributions/{self.name}/run.yaml:/root/llamastack-run-{self.name}.yaml",
|
|
],
|
|
ports=[f"{port}:{port}"],
|
|
environment={
|
|
k: v[0] for k, v in (self.docker_compose_env_vars or {}).items()
|
|
},
|
|
entrypoint=(
|
|
f'bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-{self.name}.yaml --port {port}"'
|
|
),
|
|
deploy={
|
|
"restart_policy": {
|
|
"condition": "on-failure",
|
|
"delay": "3s",
|
|
"max_attempts": 5,
|
|
"window": "60s",
|
|
}
|
|
},
|
|
)
|
|
|
|
services["llamastack"] = llamastack_config
|
|
return {
|
|
"services": {k: v.model_dump() for k, v in services.items()},
|
|
"volumes": {service_name: None for service_name in services.keys()},
|
|
}
|
|
|
|
def generate_markdown_docs(self) -> str:
|
|
"""Generate markdown documentation using both Jinja2 templates and rich tables."""
|
|
# First generate the providers table using rich
|
|
output = StringIO()
|
|
console = Console(file=output, force_terminal=False)
|
|
|
|
table = Table(title="Provider Configuration", show_header=True)
|
|
table.add_column("API", style="bold")
|
|
table.add_column("Provider(s)")
|
|
|
|
for api, providers in sorted(self.providers.items()):
|
|
table.add_row(api, ", ".join(f"`{p}`" for p in providers))
|
|
|
|
console.print(table)
|
|
providers_table = output.getvalue()
|
|
|
|
# Main documentation template
|
|
template = """# {{ name }} Distribution
|
|
|
|
{{ description }}
|
|
|
|
## Provider Configuration
|
|
|
|
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations:
|
|
|
|
{{ providers_table }}
|
|
|
|
{%- if env_vars %}
|
|
## Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
{% for var, (value, description) in docker_compose_env_vars.items() %}
|
|
- `{{ var }}`: {{ description }}
|
|
{% endfor %}
|
|
{%- endif %}
|
|
|
|
## Example Usage
|
|
|
|
### Using Docker Compose
|
|
|
|
```bash
|
|
$ cd distributions/{{ name }}
|
|
$ docker compose up
|
|
```
|
|
|
|
## Models
|
|
|
|
The following models are configured by default:
|
|
{% for model in default_models %}
|
|
- `{{ model.model_id }}`
|
|
{% endfor %}
|
|
|
|
{%- if default_shields %}
|
|
|
|
## Safety Shields
|
|
|
|
The following safety shields are configured:
|
|
{% for shield in default_shields %}
|
|
- `{{ shield.shield_id }}`
|
|
{%- endfor %}
|
|
{%- endif %}
|
|
"""
|
|
# Render template with rich-generated table
|
|
env = jinja2.Environment(trim_blocks=True, lstrip_blocks=True)
|
|
template = env.from_string(template)
|
|
return template.render(
|
|
name=self.name,
|
|
description=self.description,
|
|
providers=self.providers,
|
|
providers_table=providers_table,
|
|
docker_compose_env_vars=self.docker_compose_env_vars,
|
|
default_models=self.default_models,
|
|
default_shields=self.default_shields,
|
|
)
|
|
|
|
def save_distribution(self, output_dir: Path) -> None:
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
build_config = self.build_config()
|
|
with open(output_dir / "build.yaml", "w") as f:
|
|
yaml.safe_dump(build_config.model_dump(), f, sort_keys=False)
|
|
|
|
run_config = self.run_config()
|
|
serialized = run_config.model_dump()
|
|
with open(output_dir / "run.yaml", "w") as f:
|
|
yaml.safe_dump(serialized, f, sort_keys=False)
|
|
|
|
# serialized_str = yaml.dump(serialized, sort_keys=False)
|
|
# env_vars = set()
|
|
# for match in re.finditer(r"\${env\.([A-Za-z0-9_-]+)}", serialized_str):
|
|
# env_vars.add(match.group(1))
|
|
|
|
docker_compose = self.docker_compose_config()
|
|
with open(output_dir / "compose.yaml", "w") as f:
|
|
yaml.safe_dump(docker_compose, f, sort_keys=False, default_flow_style=False)
|
|
|
|
docs = self.generate_markdown_docs()
|
|
with open(output_dir / f"{self.name}.md", "w") as f:
|
|
f.write(docs)
|
|
|
|
@classmethod
|
|
def vllm_distribution(cls) -> "DistributionTemplate":
|
|
return cls(
|
|
name="remote-vllm",
|
|
description="Use (an external) vLLM server for running LLM inference",
|
|
providers={
|
|
"inference": ["remote::vllm"],
|
|
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
},
|
|
run_config_overrides={
|
|
"inference": [
|
|
Provider(
|
|
provider_id="vllm-0",
|
|
provider_type="remote::vllm",
|
|
config=VLLMInferenceAdapterConfig.sample_run_config(
|
|
url="${env.VLLM_URL:http://host.docker.internal:5100/v1}",
|
|
),
|
|
),
|
|
Provider(
|
|
provider_id="vllm-1",
|
|
provider_type="remote::vllm",
|
|
config=VLLMInferenceAdapterConfig.sample_run_config(
|
|
url="${env.SAFETY_VLLM_URL:http://host.docker.internal:5101/v1}",
|
|
),
|
|
),
|
|
]
|
|
},
|
|
compose_config_overrides={
|
|
"inference": {
|
|
"vllm-0": VLLMInferenceAdapterConfig.sample_docker_compose_config(
|
|
port=5100,
|
|
cuda_visible_devices="0",
|
|
model="${env.INFERENCE_MODEL:Llama3.2-3B-Instruct}",
|
|
),
|
|
"vllm-1": VLLMInferenceAdapterConfig.sample_docker_compose_config(
|
|
port=5100,
|
|
cuda_visible_devices="1",
|
|
model="${env.SAFETY_MODEL:Llama-Guard-3-1B}",
|
|
),
|
|
}
|
|
},
|
|
default_models=[
|
|
ModelInput(
|
|
model_id="${env.INFERENCE_MODEL:Llama3.2-3B-Instruct}",
|
|
provider_id="vllm-0",
|
|
),
|
|
ModelInput(
|
|
model_id="${env.SAFETY_MODEL:Llama-Guard-3-1B}",
|
|
provider_id="vllm-1",
|
|
),
|
|
],
|
|
default_shields=[
|
|
ShieldInput(shield_id="${env.SAFETY_MODEL:Llama-Guard-3-1B}")
|
|
],
|
|
docker_compose_env_vars={
|
|
# these defaults are for the Docker Compose configuration
|
|
"VLLM_URL": (
|
|
"http://host.docker.internal:${VLLM_PORT:-5100}/v1",
|
|
"URL of the vLLM server with the main inference model",
|
|
),
|
|
"SAFETY_VLLM_URL": (
|
|
"http://host.docker.internal:${SAFETY_VLLM_PORT:-5101}/v1",
|
|
"URL of the vLLM server with the safety model",
|
|
),
|
|
"MAX_TOKENS": (
|
|
"${MAX_TOKENS:-4096}",
|
|
"Maximum number of tokens for generation",
|
|
),
|
|
"INFERENCE_MODEL": (
|
|
"${INFERENCE_MODEL:-Llama3.2-3B-Instruct}",
|
|
"Name of the inference model to use",
|
|
),
|
|
"SAFETY_MODEL": (
|
|
"${SAFETY_MODEL:-Llama-Guard-3-1B}",
|
|
"Name of the safety (Llama-Guard) model to use",
|
|
),
|
|
"LLAMASTACK_PORT": (
|
|
"${LLAMASTACK_PORT:-5001}",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
},
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
parser = argparse.ArgumentParser(description="Generate a distribution template")
|
|
parser.add_argument(
|
|
"--type",
|
|
choices=["vllm"],
|
|
default="vllm",
|
|
help="Type of distribution template to generate",
|
|
)
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=Path,
|
|
required=True,
|
|
help="Output directory for the distribution files",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.type == "vllm":
|
|
template = DistributionTemplate.vllm_distribution()
|
|
else:
|
|
print(f"Unknown template type: {args.type}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
template.save_distribution(args.output_dir)
|