llama-stack-mirror/llama_stack/cli/model/safety_models.py
Sébastien Han e4a1579e63
build: format codebase imports using ruff linter (#1028)
# What does this PR do?

- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 10:06:21 -08:00

48 lines
1.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_models.datatypes import CheckpointQuantizationFormat
from llama_models.llama3.api.datatypes import SamplingParams
from llama_models.sku_list import LlamaDownloadInfo
from pydantic import BaseModel, ConfigDict, Field
class PromptGuardModel(BaseModel):
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
model_id: str = "Prompt-Guard-86M"
description: str = "Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
is_featured: bool = False
huggingface_repo: str = "meta-llama/Prompt-Guard-86M"
max_seq_length: int = 2048
is_instruct_model: bool = False
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
arch_args: Dict[str, Any] = Field(default_factory=dict)
recommended_sampling_params: Optional[SamplingParams] = None
def descriptor(self) -> str:
return self.model_id
model_config = ConfigDict(protected_namespaces=())
def prompt_guard_model_sku():
return PromptGuardModel()
def prompt_guard_download_info():
return LlamaDownloadInfo(
folder="Prompt-Guard",
files=[
"model.safetensors",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
],
pth_size=1,
)