llama-stack-mirror/llama_stack/providers/remote/inference/nvidia/nvidia.py
Sébastien Han e4a1579e63
build: format codebase imports using ruff linter (#1028)
# What does this PR do?

- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 10:06:21 -08:00

205 lines
7.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import AsyncIterator, List, Optional, Union
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat
from llama_models.sku_list import CoreModelId
from openai import APIConnectionError, AsyncOpenAI
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
ToolChoice,
ToolConfig,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_model_alias,
)
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
from .openai_utils import (
convert_chat_completion_request,
convert_completion_request,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_openai_completion_choice,
convert_openai_completion_stream,
)
from .utils import _is_nvidia_hosted, check_health
_MODEL_ALIASES = [
build_model_alias(
"meta/llama3-8b-instruct",
CoreModelId.llama3_8b_instruct.value,
),
build_model_alias(
"meta/llama3-70b-instruct",
CoreModelId.llama3_70b_instruct.value,
),
build_model_alias(
"meta/llama-3.1-8b-instruct",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"meta/llama-3.1-70b-instruct",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"meta/llama-3.1-405b-instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
build_model_alias(
"meta/llama-3.2-1b-instruct",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"meta/llama-3.2-3b-instruct",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"meta/llama-3.2-11b-vision-instruct",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
"meta/llama-3.2-90b-vision-instruct",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
# TODO(mf): how do we handle Nemotron models?
# "Llama3.1-Nemotron-51B-Instruct" -> "meta/llama-3.1-nemotron-51b-instruct",
]
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
def __init__(self, config: NVIDIAConfig) -> None:
# TODO(mf): filter by available models
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
print(f"Initializing NVIDIAInferenceAdapter({config.url})...")
if _is_nvidia_hosted(config):
if not config.api_key:
raise RuntimeError(
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
)
# elif self._config.api_key:
#
# we don't raise this warning because a user may have deployed their
# self-hosted NIM with an API key requirement.
#
# warnings.warn(
# "API key is not required for self-hosted NVIDIA NIM. "
# "Consider removing the api_key from the configuration."
# )
self._config = config
# make sure the client lives longer than any async calls
self._client = AsyncOpenAI(
base_url=f"{self._config.url}/v1",
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
timeout=self._config.timeout,
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
if content_has_media(content):
raise NotImplementedError("Media is not supported")
await check_health(self._config) # this raises errors
request = convert_completion_request(
request=CompletionRequest(
model=self.get_provider_model_id(model_id),
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
try:
response = await self._client.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
if stream:
return convert_openai_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
if tool_prompt_format:
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
await check_health(self._config) # this raises errors
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
),
n=1,
)
try:
response = await self._client.chat.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
if stream:
return convert_openai_chat_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_chat_completion_choice(response.choices[0])