mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
See https://swagger.io/docs/specification/v3_0/data-models/inheritance-and-polymorphism/#discriminator When specifying discriminators, mapping must be specified unless the value of the discriminator is the subtype itself (which in our case is not.) The changes in the YAML are self-explanatory.
217 lines
5.5 KiB
Python
217 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, register_schema, webmethod
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
from llama_stack.apis.common.job_types import JobStatus
|
|
from llama_stack.apis.common.training_types import Checkpoint
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerType(Enum):
|
|
adam = "adam"
|
|
adamw = "adamw"
|
|
sgd = "sgd"
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetFormat(Enum):
|
|
instruct = "instruct"
|
|
dialog = "dialog"
|
|
|
|
|
|
@json_schema_type
|
|
class DataConfig(BaseModel):
|
|
dataset_id: str
|
|
batch_size: int
|
|
shuffle: bool
|
|
data_format: DatasetFormat
|
|
validation_dataset_id: Optional[str] = None
|
|
packed: Optional[bool] = False
|
|
train_on_input: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerConfig(BaseModel):
|
|
optimizer_type: OptimizerType
|
|
lr: float
|
|
weight_decay: float
|
|
num_warmup_steps: int
|
|
|
|
|
|
@json_schema_type
|
|
class EfficiencyConfig(BaseModel):
|
|
enable_activation_checkpointing: Optional[bool] = False
|
|
enable_activation_offloading: Optional[bool] = False
|
|
memory_efficient_fsdp_wrap: Optional[bool] = False
|
|
fsdp_cpu_offload: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class TrainingConfig(BaseModel):
|
|
n_epochs: int
|
|
max_steps_per_epoch: int
|
|
gradient_accumulation_steps: int
|
|
max_validation_steps: int
|
|
data_config: DataConfig
|
|
optimizer_config: OptimizerConfig
|
|
efficiency_config: Optional[EfficiencyConfig] = None
|
|
dtype: Optional[str] = "bf16"
|
|
|
|
|
|
@json_schema_type
|
|
class LoraFinetuningConfig(BaseModel):
|
|
type: Literal["LoRA"] = "LoRA"
|
|
lora_attn_modules: List[str]
|
|
apply_lora_to_mlp: bool
|
|
apply_lora_to_output: bool
|
|
rank: int
|
|
alpha: int
|
|
use_dora: Optional[bool] = False
|
|
quantize_base: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class QATFinetuningConfig(BaseModel):
|
|
type: Literal["QAT"] = "QAT"
|
|
quantizer_name: str
|
|
group_size: int
|
|
|
|
|
|
AlgorithmConfig = register_schema(
|
|
Annotated[
|
|
Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")
|
|
],
|
|
name="AlgorithmConfig",
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobLogStream(BaseModel):
|
|
"""Stream of logs from a finetuning job."""
|
|
|
|
job_uuid: str
|
|
log_lines: List[str]
|
|
|
|
|
|
@json_schema_type
|
|
class RLHFAlgorithm(Enum):
|
|
dpo = "dpo"
|
|
|
|
|
|
@json_schema_type
|
|
class DPOAlignmentConfig(BaseModel):
|
|
reward_scale: float
|
|
reward_clip: float
|
|
epsilon: float
|
|
gamma: float
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingRLHFRequest(BaseModel):
|
|
"""Request to finetune a model."""
|
|
|
|
job_uuid: str
|
|
|
|
finetuned_model: URL
|
|
|
|
dataset_id: str
|
|
validation_dataset_id: str
|
|
|
|
algorithm: RLHFAlgorithm
|
|
algorithm_config: DPOAlignmentConfig
|
|
|
|
optimizer_config: OptimizerConfig
|
|
training_config: TrainingConfig
|
|
|
|
# TODO: define these
|
|
hyperparam_search_config: Dict[str, Any]
|
|
logger_config: Dict[str, Any]
|
|
|
|
|
|
class PostTrainingJob(BaseModel):
|
|
job_uuid: str
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobStatusResponse(BaseModel):
|
|
"""Status of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
status: JobStatus
|
|
|
|
scheduled_at: Optional[datetime] = None
|
|
started_at: Optional[datetime] = None
|
|
completed_at: Optional[datetime] = None
|
|
|
|
resources_allocated: Optional[Dict[str, Any]] = None
|
|
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
|
|
class ListPostTrainingJobsResponse(BaseModel):
|
|
data: List[PostTrainingJob]
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobArtifactsResponse(BaseModel):
|
|
"""Artifacts of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
# TODO(ashwin): metrics, evals
|
|
|
|
|
|
class PostTraining(Protocol):
|
|
@webmethod(route="/post-training/supervised-fine-tune", method="POST")
|
|
async def supervised_fine_tune(
|
|
self,
|
|
job_uuid: str,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: Dict[str, Any],
|
|
logger_config: Dict[str, Any],
|
|
model: str = Field(
|
|
default="Llama3.2-3B-Instruct",
|
|
description="Model descriptor from `llama model list`",
|
|
),
|
|
checkpoint_dir: Optional[str] = None,
|
|
algorithm_config: Optional[AlgorithmConfig] = None,
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post-training/preference-optimize", method="POST")
|
|
async def preference_optimize(
|
|
self,
|
|
job_uuid: str,
|
|
finetuned_model: str,
|
|
algorithm_config: DPOAlignmentConfig,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: Dict[str, Any],
|
|
logger_config: Dict[str, Any],
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post-training/jobs", method="GET")
|
|
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
|
|
|
|
@webmethod(route="/post-training/job/status", method="GET")
|
|
async def get_training_job_status(
|
|
self, job_uuid: str
|
|
) -> Optional[PostTrainingJobStatusResponse]: ...
|
|
|
|
@webmethod(route="/post-training/job/cancel", method="POST")
|
|
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
|
|
|
@webmethod(route="/post-training/job/artifacts", method="GET")
|
|
async def get_training_job_artifacts(
|
|
self, job_uuid: str
|
|
) -> Optional[PostTrainingJobArtifactsResponse]: ...
|