llama-stack-mirror/tests/integration/fixtures/common.py
Ashwin Bharambe e59c13f2b8 feat(tests): introduce inference record/replay to increase test reliability
Implements a comprehensive recording and replay system for inference API calls that eliminates dependency on online inference providers during testing. The system treats inference as deterministic by recording real API responses and replaying them in subsequent test runs. Applies to OpenAI clients (which should cover many inference requests) as well as OpenAI AsyncClient.

For storing, we use a hybrid system: Sqlite for fast lookups and JSON
files for easy greppability / debuggability.

As expected, tests become much much faster (more than 3x in just
inference testing.)

```bash
LLAMA_STACK_INFERENCE_MODE=record uv run pytest -s -v tests/integration/inference \
  --stack-config=starter \
  -k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
  --text-model="ollama/llama3.2:3b-instruct-fp16" \
  --embedding-model=sentence-transformers/all-MiniLM-L6-v2
```

```bash
LLAMA_STACK_INFERENCE_MODE=replay LLAMA_STACK_TEST_ID=<test_id> uv run pytest -s -v tests/integration/inference \
  --stack-config=starter \
  -k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
  --text-model="ollama/llama3.2:3b-instruct-fp16" \
  --embedding-model=sentence-transformers/all-MiniLM-L6-v2
```

- `LLAMA_STACK_INFERENCE_MODE`: `live` (default), `record`, or `replay`
- `LLAMA_STACK_TEST_ID`: Specify recording directory (auto-generated if not set)
- `LLAMA_STACK_RECORDING_DIR`: Storage location (default: ~/.llama/recordings/)
2025-07-29 12:16:20 -07:00

329 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import inspect
import os
import signal
import socket
import subprocess
import tempfile
import time
from urllib.parse import urlparse
import pytest
import requests
import yaml
from llama_stack_client import LlamaStackClient
from openai import OpenAI
from llama_stack import LlamaStackAsLibraryClient
from llama_stack.distribution.stack import run_config_from_adhoc_config_spec
from llama_stack.env import get_env_or_fail
DEFAULT_PORT = 8321
def is_port_available(port: int, host: str = "localhost") -> bool:
"""Check if a port is available for binding."""
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
sock.bind((host, port))
return True
except OSError:
return False
def start_llama_stack_server(config_name: str) -> subprocess.Popen:
"""Start a llama stack server with the given config."""
cmd = ["llama", "stack", "run", config_name]
devnull = open(os.devnull, "w")
process = subprocess.Popen(
cmd,
stdout=devnull, # redirect stdout to devnull to prevent deadlock
stderr=subprocess.PIPE, # keep stderr to see errors
text=True,
env={**os.environ, "LLAMA_STACK_LOG_FILE": "server.log"},
# Create new process group so we can kill all child processes
preexec_fn=os.setsid,
)
return process
def wait_for_server_ready(base_url: str, timeout: int = 30, process: subprocess.Popen | None = None) -> bool:
"""Wait for the server to be ready by polling the health endpoint."""
health_url = f"{base_url}/v1/health"
start_time = time.time()
while time.time() - start_time < timeout:
if process and process.poll() is not None:
print(f"Server process terminated with return code: {process.returncode}")
print(f"Server stderr: {process.stderr.read()}")
return False
try:
response = requests.get(health_url, timeout=5)
if response.status_code == 200:
return True
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
pass
# Print progress every 5 seconds
elapsed = time.time() - start_time
if int(elapsed) % 5 == 0 and elapsed > 0:
print(f"Waiting for server at {base_url}... ({elapsed:.1f}s elapsed)")
time.sleep(0.5)
print(f"Server failed to respond within {timeout} seconds")
return False
@pytest.fixture(scope="session")
def provider_data():
# TODO: this needs to be generalized so each provider can have a sample provider data just
# like sample run config on which we can do replace_env_vars()
keymap = {
"TAVILY_SEARCH_API_KEY": "tavily_search_api_key",
"BRAVE_SEARCH_API_KEY": "brave_search_api_key",
"FIREWORKS_API_KEY": "fireworks_api_key",
"GEMINI_API_KEY": "gemini_api_key",
"OPENAI_API_KEY": "openai_api_key",
"TOGETHER_API_KEY": "together_api_key",
"ANTHROPIC_API_KEY": "anthropic_api_key",
"GROQ_API_KEY": "groq_api_key",
"WOLFRAM_ALPHA_API_KEY": "wolfram_alpha_api_key",
}
provider_data = {}
for key, value in keymap.items():
if os.environ.get(key):
provider_data[value] = os.environ[key]
return provider_data
@pytest.fixture(scope="session")
def inference_provider_type(llama_stack_client):
providers = llama_stack_client.providers.list()
inference_providers = [p for p in providers if p.api == "inference"]
assert len(inference_providers) > 0, "No inference providers found"
return inference_providers[0].provider_type
@pytest.fixture(scope="session")
def client_with_models(
llama_stack_client,
text_model_id,
vision_model_id,
embedding_model_id,
embedding_dimension,
judge_model_id,
):
client = llama_stack_client
providers = [p for p in client.providers.list() if p.api == "inference"]
assert len(providers) > 0, "No inference providers found"
inference_providers = [p.provider_id for p in providers if p.provider_type != "inline::sentence-transformers"]
model_ids = {m.identifier for m in client.models.list()}
model_ids.update(m.provider_resource_id for m in client.models.list())
if text_model_id and text_model_id not in model_ids:
client.models.register(model_id=text_model_id, provider_id=inference_providers[0])
if vision_model_id and vision_model_id not in model_ids:
client.models.register(model_id=vision_model_id, provider_id=inference_providers[0])
if judge_model_id and judge_model_id not in model_ids:
client.models.register(model_id=judge_model_id, provider_id=inference_providers[0])
if embedding_model_id and embedding_model_id not in model_ids:
# try to find a provider that supports embeddings, if sentence-transformers is not available
selected_provider = None
for p in providers:
if p.provider_type == "inline::sentence-transformers":
selected_provider = p
break
selected_provider = selected_provider or providers[0]
client.models.register(
model_id=embedding_model_id,
provider_id=selected_provider.provider_id,
model_type="embedding",
metadata={"embedding_dimension": embedding_dimension or 384},
)
return client
@pytest.fixture(scope="session")
def available_shields(llama_stack_client):
return [shield.identifier for shield in llama_stack_client.shields.list()]
@pytest.fixture(scope="session")
def model_providers(llama_stack_client):
return {x.provider_id for x in llama_stack_client.providers.list() if x.api == "inference"}
@pytest.fixture(autouse=True)
def skip_if_no_model(request):
model_fixtures = ["text_model_id", "vision_model_id", "embedding_model_id", "judge_model_id"]
test_func = request.node.function
actual_params = inspect.signature(test_func).parameters.keys()
for fixture in model_fixtures:
# Only check fixtures that are actually in the test function's signature
if fixture in actual_params and fixture in request.fixturenames and not request.getfixturevalue(fixture):
pytest.skip(f"{fixture} empty - skipping test")
@pytest.fixture(scope="session")
def llama_stack_client(request, provider_data):
config = request.config.getoption("--stack-config")
if not config:
config = get_env_or_fail("LLAMA_STACK_CONFIG")
if not config:
raise ValueError("You must specify either --stack-config or LLAMA_STACK_CONFIG")
# Set up inference recording if enabled
inference_mode = os.environ.get("LLAMA_STACK_INFERENCE_MODE", "live").lower()
recording_context = None
if inference_mode in ["record", "replay"]:
from llama_stack.testing.inference_recorder import setup_inference_recording
recording_context = setup_inference_recording()
recording_context.__enter__()
print(f"Inference recording enabled: mode={inference_mode}")
try:
# Handle server:<config_name> format or server:<config_name>:<port>
if config.startswith("server:"):
parts = config.split(":")
config_name = parts[1]
port = int(parts[2]) if len(parts) > 2 else int(os.environ.get("LLAMA_STACK_PORT", DEFAULT_PORT))
base_url = f"http://localhost:{port}"
# Check if port is available
if is_port_available(port):
print(f"Starting llama stack server with config '{config_name}' on port {port}...")
# Start server
server_process = start_llama_stack_server(config_name)
# Wait for server to be ready
if not wait_for_server_ready(base_url, timeout=120, process=server_process):
print("Server failed to start within timeout")
server_process.terminate()
raise RuntimeError(
f"Server failed to start within timeout. Check that config '{config_name}' exists and is valid. "
f"See server.log for details."
)
print(f"Server is ready at {base_url}")
# Store process for potential cleanup (pytest will handle termination at session end)
request.session._llama_stack_server_process = server_process
else:
print(f"Port {port} is already in use, assuming server is already running...")
client = LlamaStackClient(
base_url=base_url,
provider_data=provider_data,
timeout=int(os.environ.get("LLAMA_STACK_CLIENT_TIMEOUT", "30")),
)
else:
# check if this looks like a URL using proper URL parsing
try:
parsed_url = urlparse(config)
if parsed_url.scheme and parsed_url.netloc:
client = LlamaStackClient(
base_url=config,
provider_data=provider_data,
)
else:
raise ValueError("Not a URL")
except Exception as e:
# If URL parsing fails, treat as library config
if "=" in config:
run_config = run_config_from_adhoc_config_spec(config)
run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
with open(run_config_file.name, "w") as f:
yaml.dump(run_config.model_dump(), f)
config = run_config_file.name
client = LlamaStackAsLibraryClient(
config,
provider_data=provider_data,
skip_logger_removal=True,
)
if not client.initialize():
raise RuntimeError("Initialization failed") from e
# Store recording context for cleanup
if recording_context:
request.session._inference_recording_context = recording_context
return client
except Exception:
# Clean up recording context on error
if recording_context:
try:
recording_context.__exit__(None, None, None)
except Exception as cleanup_error:
print(f"Warning: Error cleaning up recording context: {cleanup_error}")
raise
@pytest.fixture(scope="session")
def openai_client(client_with_models):
base_url = f"{client_with_models.base_url}/v1/openai/v1"
return OpenAI(base_url=base_url, api_key="fake")
@pytest.fixture(params=["openai_client", "llama_stack_client"])
def compat_client(request):
return request.getfixturevalue(request.param)
@pytest.fixture(scope="session", autouse=True)
def cleanup_server_process(request):
"""Cleanup server process and inference recording at the end of the test session."""
yield # Run tests
# Clean up inference recording context
if hasattr(request.session, "_inference_recording_context"):
recording_context = request.session._inference_recording_context
if recording_context:
try:
print("Cleaning up inference recording context...")
recording_context.__exit__(None, None, None)
except Exception as e:
print(f"Error during inference recording cleanup: {e}")
# Clean up server process
if hasattr(request.session, "_llama_stack_server_process"):
server_process = request.session._llama_stack_server_process
if server_process:
if server_process.poll() is None:
print("Terminating llama stack server process...")
else:
print(f"Server process already terminated with return code: {server_process.returncode}")
return
try:
print(f"Terminating process {server_process.pid} and its group...")
# Kill the entire process group
os.killpg(os.getpgid(server_process.pid), signal.SIGTERM)
server_process.wait(timeout=10)
print("Server process and children terminated gracefully")
except subprocess.TimeoutExpired:
print("Server process did not terminate gracefully, killing it")
# Force kill the entire process group
os.killpg(os.getpgid(server_process.pid), signal.SIGKILL)
server_process.wait()
print("Server process and children killed")
except Exception as e:
print(f"Error during server cleanup: {e}")
else:
print("Server process not found - won't be able to cleanup")