llama-stack-mirror/docs
Eric Huang e721ca9730 chore: introduce write queue for inference_store
# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids overwhelming request processing with slow inference writes.

## Test Plan

Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```


Before:

============================================================
BENCHMARK RESULTS

Response Time Statistics:
  Mean: 1.111s
  Median: 0.982s
  Min: 0.466s
  Max: 15.190s
  Std Dev: 1.091s

Percentiles:
  P50: 0.982s
  P90: 1.281s
  P95: 1.439s
  P99: 5.476s

Time to First Token (TTFT) Statistics:
  Mean: 0.474s
  Median: 0.347s
  Min: 0.175s
  Max: 15.129s
  Std Dev: 0.819s

TTFT Percentiles:
  P50: 0.347s
  P90: 0.661s
  P95: 0.762s
  P99: 2.788s

Streaming Statistics:
  Mean chunks per response: 67.2
  Total chunks received: 122154
============================================================
Total time: 120.00s
Concurrent users: 50
Total requests: 1919
Successful requests: 1819
Failed requests: 100
Success rate: 94.8%
Requests per second: 15.16

Errors (showing first 5):
  Request error:
  Request error:
  Request error:
  Request error:
  Request error:
Benchmark completed.
Stopping server (PID: 679)...
Server stopped.


After:

============================================================
BENCHMARK RESULTS

Response Time Statistics:
  Mean: 1.085s
  Median: 1.089s
  Min: 0.451s
  Max: 2.002s
  Std Dev: 0.212s

Percentiles:
  P50: 1.089s
  P90: 1.343s
  P95: 1.409s
  P99: 1.617s

Time to First Token (TTFT) Statistics:
  Mean: 0.407s
  Median: 0.361s
  Min: 0.182s
  Max: 1.178s
  Std Dev: 0.175s

TTFT Percentiles:
  P50: 0.361s
  P90: 0.644s
  P95: 0.744s
  P99: 0.932s

Streaming Statistics:
  Mean chunks per response: 66.8
  Total chunks received: 367240
============================================================
Total time: 120.00s
Concurrent users: 50
Total requests: 5495
Successful requests: 5495
Failed requests: 0
Success rate: 100.0%
Requests per second: 45.79
Benchmark completed.
Stopping server (PID: 97169)...
Server stopped.
2025-09-10 11:50:06 -07:00
..
_static feat: Adding OpenAI Prompts API (#3319) 2025-09-08 11:05:13 -04:00
notebooks chore: Add example notebook for Langchain + LLAMAStack integration (#3228) (#3259) 2025-08-26 12:58:44 -07:00
openapi_generator chore(rename): move llama_stack.distribution to llama_stack.core (#2975) 2025-07-30 23:30:53 -07:00
resources Several documentation fixes and fix link to API reference 2025-02-04 14:00:43 -08:00
source chore: introduce write queue for inference_store 2025-09-10 11:50:06 -07:00
zero_to_hero_guide chore: rename templates to distributions (#3035) 2025-08-04 11:34:17 -07:00
conftest.py fix: sleep after notebook test 2025-03-23 14:03:35 -07:00
contbuild.sh Fix broken links with docs 2024-11-22 20:42:17 -08:00
dog.jpg Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
getting_started.ipynb chore: rename templates to distributions (#3035) 2025-08-04 11:34:17 -07:00
getting_started_llama4.ipynb chore: rename templates to distributions (#3035) 2025-08-04 11:34:17 -07:00
getting_started_llama_api.ipynb chore: rename templates to distributions (#3035) 2025-08-04 11:34:17 -07:00
license_header.txt Initial commit 2024-07-23 08:32:33 -07:00
make.bat feat(pre-commit): enhance pre-commit hooks with additional checks (#2014) 2025-04-30 11:35:49 -07:00
Makefile first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
original_rfc.md chore(rename): move llama_stack.distribution to llama_stack.core (#2975) 2025-07-30 23:30:53 -07:00
quick_start.ipynb chore: rename templates to distributions (#3035) 2025-08-04 11:34:17 -07:00
README.md feat: add auto-generated CI documentation pre-commit hook (#2890) 2025-07-25 17:57:01 +02:00

Llama Stack Documentation

Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.

Render locally

From the llama-stack root directory, run the following command to render the docs locally:

uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all

You can open up the docs in your browser at http://localhost:8000

Content

Try out Llama Stack's capabilities through our detailed Jupyter notebooks: