mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 21:48:36 +00:00
# What does this PR do? This PR adds support for Conversations in Responses. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan Unit tests Integration tests <Details> <Summary>Manual testing with this script: (click to expand)</Summary> ```python from openai import OpenAI client = OpenAI() client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") def test_conversation_create(): print("Testing conversation create...") conversation = client.conversations.create( metadata={"topic": "demo"}, items=[ {"type": "message", "role": "user", "content": "Hello!"} ] ) print(f"Created: {conversation}") return conversation def test_conversation_retrieve(conv_id): print(f"Testing conversation retrieve for {conv_id}...") retrieved = client.conversations.retrieve(conv_id) print(f"Retrieved: {retrieved}") return retrieved def test_conversation_update(conv_id): print(f"Testing conversation update for {conv_id}...") updated = client.conversations.update( conv_id, metadata={"topic": "project-x"} ) print(f"Updated: {updated}") return updated def test_conversation_delete(conv_id): print(f"Testing conversation delete for {conv_id}...") deleted = client.conversations.delete(conv_id) print(f"Deleted: {deleted}") return deleted def test_conversation_items_create(conv_id): print(f"Testing conversation items create for {conv_id}...") items = client.conversations.items.create( conv_id, items=[ { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "Hello!"}] }, { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "How are you?"}] } ] ) print(f"Items created: {items}") return items def test_conversation_items_list(conv_id): print(f"Testing conversation items list for {conv_id}...") items = client.conversations.items.list(conv_id, limit=10) print(f"Items list: {items}") return items def test_conversation_item_retrieve(conv_id, item_id): print(f"Testing conversation item retrieve for {conv_id}/{item_id}...") item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id) print(f"Item retrieved: {item}") return item def test_conversation_item_delete(conv_id, item_id): print(f"Testing conversation item delete for {conv_id}/{item_id}...") deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id) print(f"Item deleted: {deleted}") return deleted def test_conversation_responses_create(): print("\nTesting conversation create for a responses example...") conversation = client.conversations.create() print(f"Created: {conversation}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") return response, conversation def test_conversations_responses_create_followup( conversation, content="Repeat what you just said but add 'this is my second time saying this'", ): print(f"Using: {conversation.id}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": content}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") conv_items = client.conversations.items.list(conversation.id) print(f"\nRetrieving list of items for conversation {conversation.id}:") print(conv_items.model_dump_json(indent=2)) def test_response_with_fake_conv_id(): fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44" print(f"Using {fake_conv_id}") try: response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "say hello"}], conversation=fake_conv_id, ) print(f"Created response: {response} for conversation {fake_conv_id}") except Exception as e: print(f"failed to create response for conversation {fake_conv_id} with error {e}") def main(): print("Testing OpenAI Conversations API...") # Create conversation conversation = test_conversation_create() conv_id = conversation.id # Retrieve conversation test_conversation_retrieve(conv_id) # Update conversation test_conversation_update(conv_id) # Create items items = test_conversation_items_create(conv_id) # List items items_list = test_conversation_items_list(conv_id) # Retrieve specific item if items_list.data: item_id = items_list.data[0].id test_conversation_item_retrieve(conv_id, item_id) # Delete item test_conversation_item_delete(conv_id, item_id) # Delete conversation test_conversation_delete(conv_id) response, conversation2 = test_conversation_responses_create() print('\ntesting reseponse retrieval') test_conversation_retrieve(conversation2.id) print('\ntesting responses follow up') test_conversations_responses_create_followup(conversation2) print('\ntesting responses follow up x2!') test_conversations_responses_create_followup( conversation2, content="Repeat what you just said but add 'this is my third time saying this'", ) test_response_with_fake_conv_id() print("All tests completed!") if __name__ == "__main__": main() ``` </Details> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> |
||
---|---|---|
.. | ||
02c93bb3c314427bae2b7a7a6f054792b9f22d2cb4522eab802810be8672d3dc.json | ||
4df315784095a200b2d275c6f8dda8be845e250000208127d20cf8c4f0bc666c.json | ||
5b03940f8f14616ba20bf3b695138b785ffc26aed814ef01db492f4a5674d6c5.json | ||
41c28019c2c89e5962ae3043dc7015ee45aa5ee235645768a230a5fa5cd45ad9.json | ||
224f7e7bd332f0ada326039866d13b7f167d5bfa91ce752022010f1e885d869f.json | ||
395c30078677826058a0cbe136dfd07c816854cfb7015ee4ece0e414d16e7e52.json | ||
1098240ef53bbd378adf8dafbd5838b16eef7d6a7d6e75d24e3c120e25e73750.json | ||
a6ad8748dce1ebe53352c6ac4ccd9b209d614ce5c6ff86992b4aed3dc344eafc.json | ||
a4416482053457914b5834398c2664ceb843d8c7deaec80a59d5e20dbb1ca090.json | ||
b2c646582d0a4d9d8986789261c0d630d5b604ee6291cf8aa3d44ab761f2c676.json | ||
bfc8818f4ad237ba6c9649d47eaff8946e334ea6a2bcb564d74f4f14dbc3497b.json | ||
c4f314b202711805808eb75f1947cb6cca0bf8dbffb0dfabb814f9da0083b3c3.json | ||
c34cccb2af2fb9f02f7136b0dd350e75e7d2a77d222ef26a9bc419e10fa33c56.json | ||
models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-4c45d25f.json | ||
models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-329b4213.json | ||
models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-e660ee4a.json | ||
models-d98e7566147f9d534bc0461f2efe61e3f525c18360a07bb3dda397579e25c27b-fb8ebeef.json |