llama-stack-mirror/tests/unit/providers/agent/test_meta_reference_agent.py
Francisco Arceo e7d21e1ee3
feat: Add support for Conversations in Responses API (#3743)
# What does this PR do?
This PR adds support for Conversations in Responses.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
Unit tests
Integration tests

<Details>
<Summary>Manual testing with this script: (click to expand)</Summary>

```python
from openai import OpenAI

client = OpenAI()
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")

def test_conversation_create():
    print("Testing conversation create...")
    conversation = client.conversations.create(
        metadata={"topic": "demo"},
        items=[
            {"type": "message", "role": "user", "content": "Hello!"}
        ]
    )
    print(f"Created: {conversation}")
    return conversation

def test_conversation_retrieve(conv_id):
    print(f"Testing conversation retrieve for {conv_id}...")
    retrieved = client.conversations.retrieve(conv_id)
    print(f"Retrieved: {retrieved}")
    return retrieved

def test_conversation_update(conv_id):
    print(f"Testing conversation update for {conv_id}...")
    updated = client.conversations.update(
        conv_id,
        metadata={"topic": "project-x"}
    )
    print(f"Updated: {updated}")
    return updated

def test_conversation_delete(conv_id):
    print(f"Testing conversation delete for {conv_id}...")
    deleted = client.conversations.delete(conv_id)
    print(f"Deleted: {deleted}")
    return deleted

def test_conversation_items_create(conv_id):
    print(f"Testing conversation items create for {conv_id}...")
    items = client.conversations.items.create(
        conv_id,
        items=[
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "Hello!"}]
            },
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "How are you?"}]
            }
        ]
    )
    print(f"Items created: {items}")
    return items

def test_conversation_items_list(conv_id):
    print(f"Testing conversation items list for {conv_id}...")
    items = client.conversations.items.list(conv_id, limit=10)
    print(f"Items list: {items}")
    return items

def test_conversation_item_retrieve(conv_id, item_id):
    print(f"Testing conversation item retrieve for {conv_id}/{item_id}...")
    item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id)
    print(f"Item retrieved: {item}")
    return item

def test_conversation_item_delete(conv_id, item_id):
    print(f"Testing conversation item delete for {conv_id}/{item_id}...")
    deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id)
    print(f"Item deleted: {deleted}")
    return deleted

def test_conversation_responses_create():
    print("\nTesting conversation create for a responses example...")
    conversation = client.conversations.create()
    print(f"Created: {conversation}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    return response, conversation

def test_conversations_responses_create_followup(
        conversation,
        content="Repeat what you just said but add 'this is my second time saying this'",
    ):
    print(f"Using: {conversation.id}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": content}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    conv_items = client.conversations.items.list(conversation.id)
    print(f"\nRetrieving list of items for conversation {conversation.id}:")
    print(conv_items.model_dump_json(indent=2))

def test_response_with_fake_conv_id():
    fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44"
    print(f"Using {fake_conv_id}")
    try:
        response = client.responses.create(
          model="gpt-4.1",
          input=[{"role": "user", "content": "say hello"}],
          conversation=fake_conv_id,
        )
        print(f"Created response: {response} for conversation {fake_conv_id}")
    except Exception as e:
        print(f"failed to create response for conversation {fake_conv_id} with error {e}")


def main():
    print("Testing OpenAI Conversations API...")

    # Create conversation
    conversation = test_conversation_create()
    conv_id = conversation.id

    # Retrieve conversation
    test_conversation_retrieve(conv_id)

    # Update conversation
    test_conversation_update(conv_id)

    # Create items
    items = test_conversation_items_create(conv_id)

    # List items
    items_list = test_conversation_items_list(conv_id)

    # Retrieve specific item
    if items_list.data:
        item_id = items_list.data[0].id
        test_conversation_item_retrieve(conv_id, item_id)

        # Delete item
        test_conversation_item_delete(conv_id, item_id)

    # Delete conversation
    test_conversation_delete(conv_id)

    response, conversation2 = test_conversation_responses_create()
    print('\ntesting reseponse retrieval')
    test_conversation_retrieve(conversation2.id)

    print('\ntesting responses follow up')
    test_conversations_responses_create_followup(conversation2)

    print('\ntesting responses follow up x2!')

    test_conversations_responses_create_followup(
        conversation2,
        content="Repeat what you just said but add 'this is my third time saying this'",
    )

    test_response_with_fake_conv_id()

    print("All tests completed!")


if __name__ == "__main__":
    main()
```
</Details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-10 11:57:40 -07:00

306 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.agents import (
Agent,
AgentConfig,
AgentCreateResponse,
)
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.inference import Inference
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
from llama_stack.providers.inline.agents.meta_reference.agents import MetaReferenceAgentsImpl
from llama_stack.providers.inline.agents.meta_reference.config import MetaReferenceAgentsImplConfig
from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo
@pytest.fixture
def mock_apis():
return {
"inference_api": AsyncMock(spec=Inference),
"vector_io_api": AsyncMock(spec=VectorIO),
"safety_api": AsyncMock(spec=Safety),
"tool_runtime_api": AsyncMock(spec=ToolRuntime),
"tool_groups_api": AsyncMock(spec=ToolGroups),
"conversations_api": AsyncMock(spec=Conversations),
}
@pytest.fixture
def config(tmp_path):
return MetaReferenceAgentsImplConfig(
persistence_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
responses_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
)
@pytest.fixture
async def agents_impl(config, mock_apis):
impl = MetaReferenceAgentsImpl(
config,
mock_apis["inference_api"],
mock_apis["vector_io_api"],
mock_apis["safety_api"],
mock_apis["tool_runtime_api"],
mock_apis["tool_groups_api"],
mock_apis["conversations_api"],
[],
)
await impl.initialize()
yield impl
await impl.shutdown()
@pytest.fixture
def sample_agent_config():
return AgentConfig(
sampling_params={
"strategy": {"type": "greedy"},
"max_tokens": 0,
"repetition_penalty": 1.0,
},
input_shields=["string"],
output_shields=["string"],
toolgroups=["mcp::my_mcp_server"],
client_tools=[
{
"name": "client_tool",
"description": "Client Tool",
"parameters": [
{
"name": "string",
"parameter_type": "string",
"description": "string",
"required": True,
"default": None,
}
],
"metadata": {
"property1": None,
"property2": None,
},
}
],
tool_choice="auto",
tool_prompt_format="json",
tool_config={
"tool_choice": "auto",
"tool_prompt_format": "json",
"system_message_behavior": "append",
},
max_infer_iters=10,
model="string",
instructions="string",
enable_session_persistence=False,
response_format={
"type": "json_schema",
"json_schema": {
"property1": None,
"property2": None,
},
},
)
async def test_create_agent(agents_impl, sample_agent_config):
response = await agents_impl.create_agent(sample_agent_config)
assert isinstance(response, AgentCreateResponse)
assert response.agent_id is not None
stored_agent = await agents_impl.persistence_store.get(f"agent:{response.agent_id}")
assert stored_agent is not None
agent_info = AgentInfo.model_validate_json(stored_agent)
assert agent_info.model == sample_agent_config.model
assert agent_info.created_at is not None
assert isinstance(agent_info.created_at, datetime)
async def test_get_agent(agents_impl, sample_agent_config):
create_response = await agents_impl.create_agent(sample_agent_config)
agent_id = create_response.agent_id
agent = await agents_impl.get_agent(agent_id)
assert isinstance(agent, Agent)
assert agent.agent_id == agent_id
assert agent.agent_config.model == sample_agent_config.model
assert agent.created_at is not None
assert isinstance(agent.created_at, datetime)
async def test_list_agents(agents_impl, sample_agent_config):
agent1_response = await agents_impl.create_agent(sample_agent_config)
agent2_response = await agents_impl.create_agent(sample_agent_config)
response = await agents_impl.list_agents()
assert isinstance(response, PaginatedResponse)
assert len(response.data) == 2
agent_ids = {agent["agent_id"] for agent in response.data}
assert agent1_response.agent_id in agent_ids
assert agent2_response.agent_id in agent_ids
@pytest.mark.parametrize("enable_session_persistence", [True, False])
async def test_create_agent_session_persistence(agents_impl, sample_agent_config, enable_session_persistence):
# Create an agent with specified persistence setting
config = sample_agent_config.model_copy()
config.enable_session_persistence = enable_session_persistence
response = await agents_impl.create_agent(config)
agent_id = response.agent_id
# Create a session
session_response = await agents_impl.create_agent_session(agent_id, "test_session")
assert session_response.session_id is not None
# Verify the session was stored
session = await agents_impl.get_agents_session(agent_id, session_response.session_id)
assert session.session_name == "test_session"
assert session.session_id == session_response.session_id
assert session.started_at is not None
assert session.turns == []
# Delete the session
await agents_impl.delete_agents_session(agent_id, session_response.session_id)
# Verify the session was deleted
with pytest.raises(ValueError):
await agents_impl.get_agents_session(agent_id, session_response.session_id)
@pytest.mark.parametrize("enable_session_persistence", [True, False])
async def test_list_agent_sessions_persistence(agents_impl, sample_agent_config, enable_session_persistence):
# Create an agent with specified persistence setting
config = sample_agent_config.model_copy()
config.enable_session_persistence = enable_session_persistence
response = await agents_impl.create_agent(config)
agent_id = response.agent_id
# Create multiple sessions
session1 = await agents_impl.create_agent_session(agent_id, "session1")
session2 = await agents_impl.create_agent_session(agent_id, "session2")
# List sessions
sessions = await agents_impl.list_agent_sessions(agent_id)
assert len(sessions.data) == 2
session_ids = {s["session_id"] for s in sessions.data}
assert session1.session_id in session_ids
assert session2.session_id in session_ids
# Delete one session
await agents_impl.delete_agents_session(agent_id, session1.session_id)
# Verify the session was deleted
with pytest.raises(ValueError):
await agents_impl.get_agents_session(agent_id, session1.session_id)
# List sessions again
sessions = await agents_impl.list_agent_sessions(agent_id)
assert len(sessions.data) == 1
assert session2.session_id in {s["session_id"] for s in sessions.data}
async def test_delete_agent(agents_impl, sample_agent_config):
# Create an agent
response = await agents_impl.create_agent(sample_agent_config)
agent_id = response.agent_id
# Delete the agent
await agents_impl.delete_agent(agent_id)
# Verify the agent was deleted
with pytest.raises(ValueError):
await agents_impl.get_agent(agent_id)
async def test__initialize_tools(agents_impl, sample_agent_config):
# Mock tool_groups_api.list_tools()
agents_impl.tool_groups_api.list_tools.return_value = ListToolDefsResponse(
data=[
ToolDef(
name="story_maker",
toolgroup_id="mcp::my_mcp_server",
description="Make a story",
input_schema={
"type": "object",
"properties": {
"story_title": {"type": "string", "description": "Title of the story", "title": "Story Title"},
"input_words": {
"type": "array",
"description": "Input words",
"items": {"type": "string"},
"title": "Input Words",
"default": [],
},
},
"required": ["story_title"],
},
)
]
)
create_response = await agents_impl.create_agent(sample_agent_config)
agent_id = create_response.agent_id
# Get an instance of ChatAgent
chat_agent = await agents_impl._get_agent_impl(agent_id)
assert chat_agent is not None
assert isinstance(chat_agent, ChatAgent)
# Initialize tool definitions
await chat_agent._initialize_tools()
assert len(chat_agent.tool_defs) == 2
# Verify the first tool, which is a client tool
first_tool = chat_agent.tool_defs[0]
assert first_tool.tool_name == "client_tool"
assert first_tool.description == "Client Tool"
# Verify the second tool, which is an MCP tool that has an array-type property
second_tool = chat_agent.tool_defs[1]
assert second_tool.tool_name == "story_maker"
assert second_tool.description == "Make a story"
# Verify the input schema
input_schema = second_tool.input_schema
assert input_schema is not None
assert input_schema["type"] == "object"
properties = input_schema["properties"]
assert len(properties) == 2
# Verify a string property
story_title = properties["story_title"]
assert story_title["type"] == "string"
assert story_title["description"] == "Title of the story"
assert story_title["title"] == "Story Title"
# Verify an array property
input_words = properties["input_words"]
assert input_words["type"] == "array"
assert input_words["description"] == "Input words"
assert input_words["items"]["type"] == "string"
assert input_words["title"] == "Input Words"
assert input_words["default"] == []
# Verify required fields
assert input_schema["required"] == ["story_title"]