llama-stack-mirror/llama_toolchain/distribution/registry.py
Ashwin Bharambe e830814399
Introduce Llama stack distributions (#22)
* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
2024-08-08 13:38:41 -07:00

61 lines
2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from functools import lru_cache
from typing import List, Optional
from .datatypes import Api, DistributionSpec, RemoteProviderSpec
from .distribution import api_providers
def client_module(api: Api) -> str:
return f"llama_toolchain.{api.value}.client"
def remote_spec(api: Api) -> RemoteProviderSpec:
return RemoteProviderSpec(
api=api,
provider_id=f"{api.value}-remote",
module=client_module(api),
)
@lru_cache()
def available_distribution_specs() -> List[DistributionSpec]:
providers = api_providers()
return [
DistributionSpec(
spec_id="inline",
description="Use code from `llama_toolchain` itself to serve all llama stack APIs",
provider_specs={
Api.inference: providers[Api.inference]["meta-reference"],
Api.safety: providers[Api.safety]["meta-reference"],
Api.agentic_system: providers[Api.agentic_system]["meta-reference"],
},
),
DistributionSpec(
spec_id="remote",
description="Point to remote services for all llama stack APIs",
provider_specs={x: remote_spec(x) for x in providers},
),
DistributionSpec(
spec_id="ollama-inline",
description="Like local-source, but use ollama for running LLM inference",
provider_specs={
Api.inference: providers[Api.inference]["meta-ollama"],
Api.safety: providers[Api.safety]["meta-reference"],
Api.agentic_system: providers[Api.agentic_system]["meta-reference"],
},
),
]
@lru_cache()
def resolve_distribution_spec(spec_id: str) -> Optional[DistributionSpec]:
for spec in available_distribution_specs():
if spec.spec_id == spec_id:
return spec
return None