llama-stack-mirror/llama_stack/strong_typing/auxiliary.py
Xi Yan e8cb9e0adb
fix: direct client pydantic type casting (#1145)
# What does this PR do?
- Closes #1142 
- Root cause is due to having `Union[str, AgenToolGroupWithArgs]`

## Test Plan
- Test with script described in issue. 

- Print out final converted pydantic object
<img width="1470" alt="image"
src="https://github.com/user-attachments/assets/15dc9cd0-f37a-4b91-905f-3fe4f59a08c6"
/>


[//]: # (## Documentation)
2025-02-18 16:07:54 -08:00

226 lines
5.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import dataclasses
import sys
from dataclasses import is_dataclass
from typing import Callable, Dict, Optional, Type, TypeVar, Union, overload
if sys.version_info >= (3, 9):
from typing import Annotated as Annotated
else:
from typing_extensions import Annotated as Annotated
if sys.version_info >= (3, 10):
from typing import TypeAlias as TypeAlias
else:
from typing_extensions import TypeAlias as TypeAlias
if sys.version_info >= (3, 11):
from typing import dataclass_transform as dataclass_transform
else:
from typing_extensions import dataclass_transform as dataclass_transform
T = TypeVar("T")
def _compact_dataclass_repr(obj: object) -> str:
"""
Compact data-class representation where positional arguments are used instead of keyword arguments.
:param obj: A data-class object.
:returns: A string that matches the pattern `Class(arg1, arg2, ...)`.
"""
if is_dataclass(obj):
arglist = ", ".join(repr(getattr(obj, field.name)) for field in dataclasses.fields(obj))
return f"{obj.__class__.__name__}({arglist})"
else:
return obj.__class__.__name__
class CompactDataClass:
"A data class whose repr() uses positional rather than keyword arguments."
def __repr__(self) -> str:
return _compact_dataclass_repr(self)
@overload
def typeannotation(cls: Type[T], /) -> Type[T]: ...
@overload
def typeannotation(cls: None, *, eq: bool = True, order: bool = False) -> Callable[[Type[T]], Type[T]]: ...
@dataclass_transform(eq_default=True, order_default=False)
def typeannotation(
cls: Optional[Type[T]] = None, *, eq: bool = True, order: bool = False
) -> Union[Type[T], Callable[[Type[T]], Type[T]]]:
"""
Returns the same class as was passed in, with dunder methods added based on the fields defined in the class.
:param cls: The data-class type to transform into a type annotation.
:param eq: Whether to generate functions to support equality comparison.
:param order: Whether to generate functions to support ordering.
:returns: A data-class type, or a wrapper for data-class types.
"""
def wrap(cls: Type[T]) -> Type[T]:
cls.__repr__ = _compact_dataclass_repr
if not dataclasses.is_dataclass(cls):
cls = dataclasses.dataclass( # type: ignore[call-overload]
cls,
init=True,
repr=False,
eq=eq,
order=order,
unsafe_hash=False,
frozen=True,
)
return cls
# see if decorator is used as @typeannotation or @typeannotation()
if cls is None:
# called with parentheses
return wrap
else:
# called without parentheses
return wrap(cls)
@typeannotation
class Alias:
"Alternative name of a property, typically used in JSON serialization."
name: str
@typeannotation
class Signed:
"Signedness of an integer type."
is_signed: bool
@typeannotation
class Storage:
"Number of bytes the binary representation of an integer type takes, e.g. 4 bytes for an int32."
bytes: int
@typeannotation
class IntegerRange:
"Minimum and maximum value of an integer. The range is inclusive."
minimum: int
maximum: int
@typeannotation
class Precision:
"Precision of a floating-point value."
significant_digits: int
decimal_digits: int = 0
@property
def integer_digits(self) -> int:
return self.significant_digits - self.decimal_digits
@typeannotation
class TimePrecision:
"""
Precision of a timestamp or time interval.
:param decimal_digits: Number of fractional digits retained in the sub-seconds field for a timestamp.
"""
decimal_digits: int = 0
@typeannotation
class Length:
"Exact length of a string."
value: int
@typeannotation
class MinLength:
"Minimum length of a string."
value: int
@typeannotation
class MaxLength:
"Maximum length of a string."
value: int
@typeannotation
class SpecialConversion:
"Indicates that the annotated type is subject to custom conversion rules."
int8: TypeAlias = Annotated[int, Signed(True), Storage(1), IntegerRange(-128, 127)]
int16: TypeAlias = Annotated[int, Signed(True), Storage(2), IntegerRange(-32768, 32767)]
int32: TypeAlias = Annotated[
int,
Signed(True),
Storage(4),
IntegerRange(-2147483648, 2147483647),
]
int64: TypeAlias = Annotated[
int,
Signed(True),
Storage(8),
IntegerRange(-9223372036854775808, 9223372036854775807),
]
uint8: TypeAlias = Annotated[int, Signed(False), Storage(1), IntegerRange(0, 255)]
uint16: TypeAlias = Annotated[int, Signed(False), Storage(2), IntegerRange(0, 65535)]
uint32: TypeAlias = Annotated[
int,
Signed(False),
Storage(4),
IntegerRange(0, 4294967295),
]
uint64: TypeAlias = Annotated[
int,
Signed(False),
Storage(8),
IntegerRange(0, 18446744073709551615),
]
float32: TypeAlias = Annotated[float, Storage(4)]
float64: TypeAlias = Annotated[float, Storage(8)]
# maps globals of type Annotated[T, ...] defined in this module to their string names
_auxiliary_types: Dict[object, str] = {}
module = sys.modules[__name__]
for var in dir(module):
typ = getattr(module, var)
if getattr(typ, "__metadata__", None) is not None:
# type is Annotated[T, ...]
_auxiliary_types[typ] = var
def get_auxiliary_format(data_type: object) -> Optional[str]:
"Returns the JSON format string corresponding to an auxiliary type."
return _auxiliary_types.get(data_type)