mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack. Most important bits: * Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis. * We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are: - routing model A to ollama and model B to a remote provider like Together - routing shield A to local impl while shield B to a remote provider like Bedrock - routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis * Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
463 lines
12 KiB
Python
463 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.apis.common.deployment_types import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.apis.safety import * # noqa: F403
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
|
|
|
|
@json_schema_type
|
|
class Attachment(BaseModel):
|
|
content: InterleavedTextMedia | URL
|
|
mime_type: str
|
|
|
|
|
|
class AgentTool(Enum):
|
|
brave_search = "brave_search"
|
|
wolfram_alpha = "wolfram_alpha"
|
|
photogen = "photogen"
|
|
code_interpreter = "code_interpreter"
|
|
|
|
function_call = "function_call"
|
|
memory = "memory"
|
|
|
|
|
|
class ToolDefinitionCommon(BaseModel):
|
|
input_shields: Optional[List[str]] = Field(default_factory=list)
|
|
output_shields: Optional[List[str]] = Field(default_factory=list)
|
|
|
|
|
|
class SearchEngineType(Enum):
|
|
bing = "bing"
|
|
brave = "brave"
|
|
|
|
|
|
@json_schema_type
|
|
class SearchToolDefinition(ToolDefinitionCommon):
|
|
# NOTE: brave_search is just a placeholder since model always uses
|
|
# brave_search as tool call name
|
|
type: Literal[AgentTool.brave_search.value] = AgentTool.brave_search.value
|
|
api_key: str
|
|
engine: SearchEngineType = SearchEngineType.brave
|
|
remote_execution: Optional[RestAPIExecutionConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class WolframAlphaToolDefinition(ToolDefinitionCommon):
|
|
type: Literal[AgentTool.wolfram_alpha.value] = AgentTool.wolfram_alpha.value
|
|
api_key: str
|
|
remote_execution: Optional[RestAPIExecutionConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class PhotogenToolDefinition(ToolDefinitionCommon):
|
|
type: Literal[AgentTool.photogen.value] = AgentTool.photogen.value
|
|
remote_execution: Optional[RestAPIExecutionConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CodeInterpreterToolDefinition(ToolDefinitionCommon):
|
|
type: Literal[AgentTool.code_interpreter.value] = AgentTool.code_interpreter.value
|
|
enable_inline_code_execution: bool = True
|
|
remote_execution: Optional[RestAPIExecutionConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class FunctionCallToolDefinition(ToolDefinitionCommon):
|
|
type: Literal[AgentTool.function_call.value] = AgentTool.function_call.value
|
|
function_name: str
|
|
description: str
|
|
parameters: Dict[str, ToolParamDefinition]
|
|
remote_execution: Optional[RestAPIExecutionConfig] = None
|
|
|
|
|
|
class _MemoryBankConfigCommon(BaseModel):
|
|
bank_id: str
|
|
|
|
|
|
class AgentVectorMemoryBankConfig(_MemoryBankConfigCommon):
|
|
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
|
|
|
|
|
|
class AgentKeyValueMemoryBankConfig(_MemoryBankConfigCommon):
|
|
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
|
|
keys: List[str] # what keys to focus on
|
|
|
|
|
|
class AgentKeywordMemoryBankConfig(_MemoryBankConfigCommon):
|
|
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
|
|
|
|
|
|
class AgentGraphMemoryBankConfig(_MemoryBankConfigCommon):
|
|
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
|
|
entities: List[str] # what entities to focus on
|
|
|
|
|
|
MemoryBankConfig = Annotated[
|
|
Union[
|
|
AgentVectorMemoryBankConfig,
|
|
AgentKeyValueMemoryBankConfig,
|
|
AgentKeywordMemoryBankConfig,
|
|
AgentGraphMemoryBankConfig,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
class MemoryQueryGenerator(Enum):
|
|
default = "default"
|
|
llm = "llm"
|
|
custom = "custom"
|
|
|
|
|
|
class DefaultMemoryQueryGeneratorConfig(BaseModel):
|
|
type: Literal[MemoryQueryGenerator.default.value] = (
|
|
MemoryQueryGenerator.default.value
|
|
)
|
|
sep: str = " "
|
|
|
|
|
|
class LLMMemoryQueryGeneratorConfig(BaseModel):
|
|
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
|
|
model: str
|
|
template: str
|
|
|
|
|
|
class CustomMemoryQueryGeneratorConfig(BaseModel):
|
|
type: Literal[MemoryQueryGenerator.custom.value] = MemoryQueryGenerator.custom.value
|
|
|
|
|
|
MemoryQueryGeneratorConfig = Annotated[
|
|
Union[
|
|
DefaultMemoryQueryGeneratorConfig,
|
|
LLMMemoryQueryGeneratorConfig,
|
|
CustomMemoryQueryGeneratorConfig,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryToolDefinition(ToolDefinitionCommon):
|
|
type: Literal[AgentTool.memory.value] = AgentTool.memory.value
|
|
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
|
|
# This config defines how a query is generated using the messages
|
|
# for memory bank retrieval.
|
|
query_generator_config: MemoryQueryGeneratorConfig = Field(
|
|
default=DefaultMemoryQueryGeneratorConfig()
|
|
)
|
|
max_tokens_in_context: int = 4096
|
|
max_chunks: int = 10
|
|
|
|
|
|
AgentToolDefinition = Annotated[
|
|
Union[
|
|
SearchToolDefinition,
|
|
WolframAlphaToolDefinition,
|
|
PhotogenToolDefinition,
|
|
CodeInterpreterToolDefinition,
|
|
FunctionCallToolDefinition,
|
|
MemoryToolDefinition,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
class StepCommon(BaseModel):
|
|
turn_id: str
|
|
step_id: str
|
|
started_at: Optional[datetime] = None
|
|
completed_at: Optional[datetime] = None
|
|
|
|
|
|
class StepType(Enum):
|
|
inference = "inference"
|
|
tool_execution = "tool_execution"
|
|
shield_call = "shield_call"
|
|
memory_retrieval = "memory_retrieval"
|
|
|
|
|
|
@json_schema_type
|
|
class InferenceStep(StepCommon):
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
step_type: Literal[StepType.inference.value] = StepType.inference.value
|
|
model_response: CompletionMessage
|
|
|
|
|
|
@json_schema_type
|
|
class ToolExecutionStep(StepCommon):
|
|
step_type: Literal[StepType.tool_execution.value] = StepType.tool_execution.value
|
|
tool_calls: List[ToolCall]
|
|
tool_responses: List[ToolResponse]
|
|
|
|
|
|
@json_schema_type
|
|
class ShieldCallStep(StepCommon):
|
|
step_type: Literal[StepType.shield_call.value] = StepType.shield_call.value
|
|
violation: Optional[SafetyViolation]
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryRetrievalStep(StepCommon):
|
|
step_type: Literal[StepType.memory_retrieval.value] = (
|
|
StepType.memory_retrieval.value
|
|
)
|
|
memory_bank_ids: List[str]
|
|
inserted_context: InterleavedTextMedia
|
|
|
|
|
|
Step = Annotated[
|
|
Union[
|
|
InferenceStep,
|
|
ToolExecutionStep,
|
|
ShieldCallStep,
|
|
MemoryRetrievalStep,
|
|
],
|
|
Field(discriminator="step_type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class Turn(BaseModel):
|
|
"""A single turn in an interaction with an Agentic System."""
|
|
|
|
turn_id: str
|
|
session_id: str
|
|
input_messages: List[
|
|
Union[
|
|
UserMessage,
|
|
ToolResponseMessage,
|
|
]
|
|
]
|
|
steps: List[Step]
|
|
output_message: CompletionMessage
|
|
output_attachments: List[Attachment] = Field(default_factory=list)
|
|
|
|
started_at: datetime
|
|
completed_at: Optional[datetime] = None
|
|
|
|
|
|
@json_schema_type
|
|
class Session(BaseModel):
|
|
"""A single session of an interaction with an Agentic System."""
|
|
|
|
session_id: str
|
|
session_name: str
|
|
turns: List[Turn]
|
|
started_at: datetime
|
|
|
|
memory_bank: Optional[MemoryBank] = None
|
|
|
|
|
|
class AgentConfigCommon(BaseModel):
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
input_shields: Optional[List[str]] = Field(default_factory=list)
|
|
output_shields: Optional[List[str]] = Field(default_factory=list)
|
|
|
|
tools: Optional[List[AgentToolDefinition]] = Field(default_factory=list)
|
|
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
|
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
|
default=ToolPromptFormat.json
|
|
)
|
|
|
|
max_infer_iters: int = 10
|
|
|
|
|
|
@json_schema_type
|
|
class AgentConfig(AgentConfigCommon):
|
|
model: str
|
|
instructions: str
|
|
enable_session_persistence: bool
|
|
|
|
|
|
class AgentConfigOverridablePerTurn(AgentConfigCommon):
|
|
instructions: Optional[str] = None
|
|
|
|
|
|
class AgentTurnResponseEventType(Enum):
|
|
step_start = "step_start"
|
|
step_complete = "step_complete"
|
|
step_progress = "step_progress"
|
|
|
|
turn_start = "turn_start"
|
|
turn_complete = "turn_complete"
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepStartPayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.step_start.value] = (
|
|
AgentTurnResponseEventType.step_start.value
|
|
)
|
|
step_type: StepType
|
|
step_id: str
|
|
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepCompletePayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.step_complete.value] = (
|
|
AgentTurnResponseEventType.step_complete.value
|
|
)
|
|
step_type: StepType
|
|
step_details: Step
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStepProgressPayload(BaseModel):
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
event_type: Literal[AgentTurnResponseEventType.step_progress.value] = (
|
|
AgentTurnResponseEventType.step_progress.value
|
|
)
|
|
step_type: StepType
|
|
step_id: str
|
|
|
|
model_response_text_delta: Optional[str] = None
|
|
tool_call_delta: Optional[ToolCallDelta] = None
|
|
tool_response_text_delta: Optional[str] = None
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseTurnStartPayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.turn_start.value] = (
|
|
AgentTurnResponseEventType.turn_start.value
|
|
)
|
|
turn_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseTurnCompletePayload(BaseModel):
|
|
event_type: Literal[AgentTurnResponseEventType.turn_complete.value] = (
|
|
AgentTurnResponseEventType.turn_complete.value
|
|
)
|
|
turn: Turn
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseEvent(BaseModel):
|
|
"""Streamed agent execution response."""
|
|
|
|
payload: Annotated[
|
|
Union[
|
|
AgentTurnResponseStepStartPayload,
|
|
AgentTurnResponseStepProgressPayload,
|
|
AgentTurnResponseStepCompletePayload,
|
|
AgentTurnResponseTurnStartPayload,
|
|
AgentTurnResponseTurnCompletePayload,
|
|
],
|
|
Field(discriminator="event_type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class AgentCreateResponse(BaseModel):
|
|
agent_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentSessionCreateResponse(BaseModel):
|
|
session_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
|
|
agent_id: str
|
|
session_id: str
|
|
|
|
# TODO: figure out how we can simplify this and make why
|
|
# ToolResponseMessage needs to be here (it is function call
|
|
# execution from outside the system)
|
|
messages: List[
|
|
Union[
|
|
UserMessage,
|
|
ToolResponseMessage,
|
|
]
|
|
]
|
|
attachments: Optional[List[Attachment]] = None
|
|
|
|
stream: Optional[bool] = False
|
|
|
|
|
|
@json_schema_type
|
|
class AgentTurnResponseStreamChunk(BaseModel):
|
|
event: AgentTurnResponseEvent
|
|
|
|
|
|
@json_schema_type
|
|
class AgentStepResponse(BaseModel):
|
|
step: Step
|
|
|
|
|
|
class Agents(Protocol):
|
|
@webmethod(route="/agents/create")
|
|
async def create_agent(
|
|
self,
|
|
agent_config: AgentConfig,
|
|
) -> AgentCreateResponse: ...
|
|
|
|
@webmethod(route="/agents/turn/create")
|
|
async def create_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
messages: List[
|
|
Union[
|
|
UserMessage,
|
|
ToolResponseMessage,
|
|
]
|
|
],
|
|
attachments: Optional[List[Attachment]] = None,
|
|
stream: Optional[bool] = False,
|
|
) -> AgentTurnResponseStreamChunk: ...
|
|
|
|
@webmethod(route="/agents/turn/get")
|
|
async def get_agents_turn(
|
|
self,
|
|
agent_id: str,
|
|
turn_id: str,
|
|
) -> Turn: ...
|
|
|
|
@webmethod(route="/agents/step/get")
|
|
async def get_agents_step(
|
|
self, agent_id: str, turn_id: str, step_id: str
|
|
) -> AgentStepResponse: ...
|
|
|
|
@webmethod(route="/agents/session/create")
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse: ...
|
|
|
|
@webmethod(route="/agents/session/get")
|
|
async def get_agents_session(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_ids: Optional[List[str]] = None,
|
|
) -> Session: ...
|
|
|
|
@webmethod(route="/agents/session/delete")
|
|
async def delete_agents_session(self, agent_id: str, session_id: str) -> None: ...
|
|
|
|
@webmethod(route="/agents/delete")
|
|
async def delete_agents(
|
|
self,
|
|
agent_id: str,
|
|
) -> None: ...
|