mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-13 14:08:39 +00:00
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Applies the same pattern from https://github.com/llamastack/llama-stack/pull/3777 to embeddings and vector_stores.create() endpoints. This should _not_ be a breaking change since (a) our tests were already using the `extra_body` parameter when passing in to the backend (b) but the backend probably wasn't extracting the parameters correctly. This PR will fix that. Updated APIs: `openai_embeddings(), openai_create_vector_store(), openai_create_vector_store_file_batch()`
90 lines
2.9 KiB
Python
90 lines
2.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import base64
|
|
import struct
|
|
from typing import TYPE_CHECKING
|
|
|
|
from llama_stack.log import get_logger
|
|
|
|
if TYPE_CHECKING:
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
from llama_stack.apis.inference import (
|
|
ModelStore,
|
|
OpenAIEmbeddingData,
|
|
OpenAIEmbeddingsRequestWithExtraBody,
|
|
OpenAIEmbeddingsResponse,
|
|
OpenAIEmbeddingUsage,
|
|
)
|
|
|
|
EMBEDDING_MODELS = {}
|
|
|
|
|
|
log = get_logger(name=__name__, category="providers::utils")
|
|
|
|
|
|
class SentenceTransformerEmbeddingMixin:
|
|
model_store: ModelStore
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
params: OpenAIEmbeddingsRequestWithExtraBody,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
# Convert input to list format if it's a single string
|
|
input_list = [params.input] if isinstance(params.input, str) else params.input
|
|
if not input_list:
|
|
raise ValueError("Empty list not supported")
|
|
|
|
# Get the model and generate embeddings
|
|
model_obj = await self.model_store.get_model(params.model)
|
|
embedding_model = await self._load_sentence_transformer_model(model_obj.provider_resource_id)
|
|
embeddings = await asyncio.to_thread(embedding_model.encode, input_list, show_progress_bar=False)
|
|
|
|
# Convert embeddings to the requested format
|
|
data = []
|
|
for i, embedding in enumerate(embeddings):
|
|
if params.encoding_format == "base64":
|
|
# Convert float array to base64 string
|
|
float_bytes = struct.pack(f"{len(embedding)}f", *embedding)
|
|
embedding_value = base64.b64encode(float_bytes).decode("ascii")
|
|
else:
|
|
# Default to float format
|
|
embedding_value = embedding.tolist()
|
|
|
|
data.append(
|
|
OpenAIEmbeddingData(
|
|
embedding=embedding_value,
|
|
index=i,
|
|
)
|
|
)
|
|
|
|
# Not returning actual token usage
|
|
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
|
return OpenAIEmbeddingsResponse(
|
|
data=data,
|
|
model=params.model,
|
|
usage=usage,
|
|
)
|
|
|
|
async def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
|
|
global EMBEDDING_MODELS
|
|
|
|
loaded_model = EMBEDDING_MODELS.get(model)
|
|
if loaded_model is not None:
|
|
return loaded_model
|
|
|
|
log.info(f"Loading sentence transformer for {model}...")
|
|
|
|
def _load_model():
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
return SentenceTransformer(model)
|
|
|
|
loaded_model = await asyncio.to_thread(_load_model)
|
|
EMBEDDING_MODELS[model] = loaded_model
|
|
return loaded_model
|