mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
Summary: https://github.com/meta-llama/llama-stack/pull/1214 introduced `get_default_tool_prompt_format` but tried to use it on the raw identifier. Here we move calling this func later in the stack and rely on the inference provider to resolve the raw identifier into llama model, then call get_default_tool_prompt_format. Test Plan: ``` LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming --inference-model=llama3.2:3b-instruct-fp16 --vision-inference-model="" ``` Before: <img width="1288" alt="image" src="https://github.com/user-attachments/assets/918c7839-1f45-4540-864e-4b842cc367df" /> After: <img width="1522" alt="image" src="https://github.com/user-attachments/assets/447d78af-b3b9-4837-8cb7-6ac549005efe" />
479 lines
17 KiB
Python
479 lines
17 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import base64
|
|
import io
|
|
import json
|
|
import logging
|
|
import re
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import httpx
|
|
from PIL import Image as PIL_Image
|
|
|
|
from llama_stack import logcat
|
|
from llama_stack.apis.common.content_types import (
|
|
ImageContentItem,
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
TextContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
Message,
|
|
ResponseFormat,
|
|
ResponseFormatType,
|
|
SystemMessage,
|
|
SystemMessageBehavior,
|
|
ToolChoice,
|
|
ToolDefinition,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.models.llama.datatypes import (
|
|
ModelFamily,
|
|
RawContent,
|
|
RawContentItem,
|
|
RawMediaItem,
|
|
RawMessage,
|
|
RawTextItem,
|
|
Role,
|
|
StopReason,
|
|
ToolPromptFormat,
|
|
is_multimodal,
|
|
)
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
|
from llama_stack.models.llama.llama3.prompt_templates import (
|
|
BuiltinToolGenerator,
|
|
FunctionTagCustomToolGenerator,
|
|
JsonCustomToolGenerator,
|
|
PythonListCustomToolGenerator,
|
|
SystemDefaultGenerator,
|
|
)
|
|
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
|
from llama_stack.models.llama.sku_list import resolve_model
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatCompletionRequestWithRawContent(ChatCompletionRequest):
|
|
messages: List[RawMessage]
|
|
|
|
|
|
class CompletionRequestWithRawContent(CompletionRequest):
|
|
content: RawContent
|
|
|
|
|
|
def decode_assistant_message(content: str, stop_reason: StopReason) -> RawMessage:
|
|
formatter = ChatFormat(Tokenizer.get_instance())
|
|
return formatter.decode_assistant_message_from_content(content, stop_reason)
|
|
|
|
|
|
def interleaved_content_as_str(content: InterleavedContent, sep: str = " ") -> str:
|
|
def _process(c) -> str:
|
|
if isinstance(c, str):
|
|
return c
|
|
elif isinstance(c, ImageContentItem):
|
|
return "<image>"
|
|
elif isinstance(c, TextContentItem):
|
|
return c.text
|
|
else:
|
|
raise ValueError(f"Unsupported content type: {type(c)}")
|
|
|
|
if isinstance(content, list):
|
|
return sep.join(_process(c) for c in content)
|
|
else:
|
|
return _process(content)
|
|
|
|
|
|
async def convert_request_to_raw(
|
|
request: Union[ChatCompletionRequest, CompletionRequest],
|
|
) -> Union[ChatCompletionRequestWithRawContent, CompletionRequestWithRawContent]:
|
|
if isinstance(request, ChatCompletionRequest):
|
|
messages = []
|
|
for m in request.messages:
|
|
content = await interleaved_content_convert_to_raw(m.content)
|
|
d = m.model_dump()
|
|
d["content"] = content
|
|
messages.append(RawMessage(**d))
|
|
|
|
d = request.model_dump()
|
|
d["messages"] = messages
|
|
request = ChatCompletionRequestWithRawContent(**d)
|
|
else:
|
|
d = request.model_dump()
|
|
d["content"] = await interleaved_content_convert_to_raw(request.content)
|
|
request = CompletionRequestWithRawContent(**d)
|
|
|
|
return request
|
|
|
|
|
|
async def interleaved_content_convert_to_raw(
|
|
content: InterleavedContent,
|
|
) -> RawContent:
|
|
"""Download content from URLs / files etc. so plain bytes can be sent to the model"""
|
|
|
|
async def _localize_single(c: str | InterleavedContentItem) -> str | RawContentItem:
|
|
if isinstance(c, str):
|
|
return RawTextItem(text=c)
|
|
elif isinstance(c, TextContentItem):
|
|
return RawTextItem(text=c.text)
|
|
elif isinstance(c, ImageContentItem):
|
|
image = c.image
|
|
if image.url:
|
|
# Load image bytes from URL
|
|
if image.url.uri.startswith("data"):
|
|
match = re.match(r"data:image/(\w+);base64,(.+)", image.url.uri)
|
|
if not match:
|
|
raise ValueError(f"Invalid data URL format, {image.url.uri[:40]}...")
|
|
_, image_data = match.groups()
|
|
data = base64.b64decode(image_data)
|
|
elif image.url.uri.startswith("file://"):
|
|
path = image.url.uri[len("file://") :]
|
|
with open(path, "rb") as f:
|
|
data = f.read() # type: ignore
|
|
elif image.url.uri.startswith("http"):
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.get(image.url.uri)
|
|
data = response.content
|
|
else:
|
|
raise ValueError("Unsupported URL type")
|
|
elif image.data:
|
|
# data is a base64 encoded string, decode it to bytes for RawMediaItem
|
|
data = base64.b64decode(image.data)
|
|
else:
|
|
raise ValueError("No data or URL provided")
|
|
|
|
return RawMediaItem(data=data)
|
|
else:
|
|
raise ValueError(f"Unsupported content type: {type(c)}")
|
|
|
|
if isinstance(content, list):
|
|
return await asyncio.gather(*(_localize_single(c) for c in content))
|
|
else:
|
|
return await _localize_single(content)
|
|
|
|
|
|
def content_has_media(content: InterleavedContent):
|
|
def _has_media_content(c):
|
|
return isinstance(c, ImageContentItem)
|
|
|
|
if isinstance(content, list):
|
|
return any(_has_media_content(c) for c in content)
|
|
else:
|
|
return _has_media_content(content)
|
|
|
|
|
|
def messages_have_media(messages: List[Message]):
|
|
return any(content_has_media(m.content) for m in messages)
|
|
|
|
|
|
def request_has_media(request: Union[ChatCompletionRequest, CompletionRequest]):
|
|
if isinstance(request, ChatCompletionRequest):
|
|
return messages_have_media(request.messages)
|
|
else:
|
|
return content_has_media(request.content)
|
|
|
|
|
|
async def localize_image_content(media: ImageContentItem) -> Tuple[bytes, str]:
|
|
image = media.image
|
|
if image.url and image.url.uri.startswith("http"):
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.get(image.url.uri)
|
|
content = r.content
|
|
content_type = r.headers.get("content-type")
|
|
if content_type:
|
|
format = content_type.split("/")[-1]
|
|
else:
|
|
format = "png"
|
|
|
|
return content, format
|
|
else:
|
|
# data is a base64 encoded string, decode it to bytes first
|
|
# TODO(mf): do this more efficiently, decode less
|
|
data_bytes = base64.b64decode(image.data)
|
|
pil_image = PIL_Image.open(io.BytesIO(data_bytes))
|
|
return data_bytes, pil_image.format
|
|
|
|
|
|
async def convert_image_content_to_url(
|
|
media: ImageContentItem, download: bool = False, include_format: bool = True
|
|
) -> str:
|
|
image = media.image
|
|
if image.url and (not download or image.url.uri.startswith("data")):
|
|
return image.url.uri
|
|
|
|
content, format = await localize_image_content(media)
|
|
if include_format:
|
|
return f"data:image/{format};base64," + base64.b64encode(content).decode("utf-8")
|
|
else:
|
|
return base64.b64encode(content).decode("utf-8")
|
|
|
|
|
|
async def completion_request_to_prompt(request: CompletionRequest) -> str:
|
|
content = augment_content_with_response_format_prompt(request.response_format, request.content)
|
|
request.content = content
|
|
request = await convert_request_to_raw(request)
|
|
|
|
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
|
model_input = formatter.encode_content(request.content)
|
|
return formatter.tokenizer.decode(model_input.tokens)
|
|
|
|
|
|
async def completion_request_to_prompt_model_input_info(request: CompletionRequest) -> Tuple[str, int]:
|
|
content = augment_content_with_response_format_prompt(request.response_format, request.content)
|
|
request.content = content
|
|
request = await convert_request_to_raw(request)
|
|
|
|
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
|
model_input = formatter.encode_content(request.content)
|
|
return (formatter.tokenizer.decode(model_input.tokens), len(model_input.tokens))
|
|
|
|
|
|
def augment_content_with_response_format_prompt(response_format, content):
|
|
if fmt_prompt := response_format_prompt(response_format):
|
|
if isinstance(content, list):
|
|
return content + [TextContentItem(text=fmt_prompt)]
|
|
elif isinstance(content, str):
|
|
return [TextContentItem(text=content), TextContentItem(text=fmt_prompt)]
|
|
else:
|
|
return [content, TextContentItem(text=fmt_prompt)]
|
|
|
|
return content
|
|
|
|
|
|
async def chat_completion_request_to_prompt(request: ChatCompletionRequest, llama_model: str) -> str:
|
|
messages = chat_completion_request_to_messages(request, llama_model)
|
|
request.messages = messages
|
|
request = await convert_request_to_raw(request)
|
|
|
|
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
|
model_input = formatter.encode_dialog_prompt(
|
|
request.messages,
|
|
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
|
)
|
|
return formatter.tokenizer.decode(model_input.tokens)
|
|
|
|
|
|
async def chat_completion_request_to_model_input_info(
|
|
request: ChatCompletionRequest, llama_model: str
|
|
) -> Tuple[str, int]:
|
|
messages = chat_completion_request_to_messages(request, llama_model)
|
|
request.messages = messages
|
|
request = await convert_request_to_raw(request)
|
|
|
|
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
|
model_input = formatter.encode_dialog_prompt(
|
|
request.messages,
|
|
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
|
)
|
|
return (
|
|
formatter.tokenizer.decode(model_input.tokens),
|
|
len(model_input.tokens),
|
|
)
|
|
|
|
|
|
def chat_completion_request_to_messages(
|
|
request: ChatCompletionRequest,
|
|
llama_model: str,
|
|
) -> List[Message]:
|
|
"""Reads chat completion request and augments the messages to handle tools.
|
|
For eg. for llama_3_1, add system message with the appropriate tools or
|
|
add user messsage for custom tools, etc.
|
|
"""
|
|
assert llama_model is not None, "llama_model is required"
|
|
model = resolve_model(llama_model)
|
|
if model is None:
|
|
log.error(f"Could not resolve model {llama_model}")
|
|
return request.messages
|
|
|
|
allowed_models = supported_inference_models()
|
|
descriptors = [m.descriptor() for m in allowed_models]
|
|
if model.descriptor() not in descriptors:
|
|
log.error(f"Unsupported inference model? {model.descriptor()}")
|
|
return request.messages
|
|
|
|
if model.model_family == ModelFamily.llama3_1 or (
|
|
model.model_family == ModelFamily.llama3_2 and is_multimodal(model.core_model_id)
|
|
):
|
|
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
|
|
messages = augment_messages_for_tools_llama_3_1(request)
|
|
elif model.model_family in (ModelFamily.llama3_2, ModelFamily.llama3_3):
|
|
# llama3.2 and llama3.3 models follow the same tool prompt format
|
|
messages = augment_messages_for_tools_llama_3_2(request)
|
|
else:
|
|
messages = request.messages
|
|
|
|
if fmt_prompt := response_format_prompt(request.response_format):
|
|
messages.append(UserMessage(content=fmt_prompt))
|
|
|
|
return messages
|
|
|
|
|
|
def response_format_prompt(fmt: Optional[ResponseFormat]):
|
|
if not fmt:
|
|
return None
|
|
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
return f"Please respond in JSON format with the schema: {json.dumps(fmt.json_schema)}"
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise NotImplementedError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
|
|
def augment_messages_for_tools_llama_3_1(
|
|
request: ChatCompletionRequest,
|
|
) -> List[Message]:
|
|
existing_messages = request.messages
|
|
existing_system_message = None
|
|
if existing_messages[0].role == Role.system.value:
|
|
existing_system_message = existing_messages.pop(0)
|
|
|
|
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
|
|
|
messages = []
|
|
|
|
default_gen = SystemDefaultGenerator()
|
|
default_template = default_gen.gen()
|
|
|
|
sys_content = ""
|
|
|
|
tool_template = None
|
|
if request.tools:
|
|
tool_gen = BuiltinToolGenerator()
|
|
tool_template = tool_gen.gen(request.tools)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
sys_content += default_template.render()
|
|
|
|
if existing_system_message:
|
|
# TODO: this fn is needed in many places
|
|
def _process(c):
|
|
if isinstance(c, str):
|
|
return c
|
|
else:
|
|
return "<media>"
|
|
|
|
sys_content += "\n"
|
|
|
|
if isinstance(existing_system_message.content, str):
|
|
sys_content += _process(existing_system_message.content)
|
|
elif isinstance(existing_system_message.content, list):
|
|
sys_content += "\n".join([_process(c) for c in existing_system_message.content])
|
|
|
|
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
|
if tool_choice_prompt:
|
|
sys_content += "\n" + tool_choice_prompt
|
|
|
|
messages.append(SystemMessage(content=sys_content))
|
|
|
|
has_custom_tools = any(isinstance(dfn.tool_name, str) for dfn in request.tools)
|
|
if has_custom_tools:
|
|
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.json
|
|
if fmt == ToolPromptFormat.json:
|
|
tool_gen = JsonCustomToolGenerator()
|
|
elif fmt == ToolPromptFormat.function_tag:
|
|
tool_gen = FunctionTagCustomToolGenerator()
|
|
else:
|
|
raise ValueError(f"Non supported ToolPromptFormat {fmt}")
|
|
|
|
custom_tools = [t for t in request.tools if isinstance(t.tool_name, str)]
|
|
custom_template = tool_gen.gen(custom_tools)
|
|
messages.append(UserMessage(content=custom_template.render()))
|
|
|
|
# Add back existing messages from the request
|
|
messages += existing_messages
|
|
|
|
return messages
|
|
|
|
|
|
def augment_messages_for_tools_llama_3_2(
|
|
request: ChatCompletionRequest,
|
|
) -> List[Message]:
|
|
existing_messages = request.messages
|
|
existing_system_message = None
|
|
if existing_messages[0].role == Role.system.value:
|
|
existing_system_message = existing_messages.pop(0)
|
|
|
|
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
|
|
|
sys_content = ""
|
|
custom_tools, builtin_tools = [], []
|
|
for t in request.tools:
|
|
if isinstance(t.tool_name, str):
|
|
custom_tools.append(t)
|
|
else:
|
|
builtin_tools.append(t)
|
|
|
|
if builtin_tools:
|
|
tool_gen = BuiltinToolGenerator()
|
|
tool_template = tool_gen.gen(builtin_tools)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
custom_tools = [dfn for dfn in request.tools if isinstance(dfn.tool_name, str)]
|
|
if custom_tools:
|
|
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.python_list
|
|
if fmt != ToolPromptFormat.python_list:
|
|
raise ValueError(f"Non supported ToolPromptFormat {request.tool_config.tool_prompt_format}")
|
|
|
|
system_prompt = None
|
|
if existing_system_message and request.tool_config.system_message_behavior == SystemMessageBehavior.replace:
|
|
system_prompt = existing_system_message.content
|
|
|
|
tool_template = PythonListCustomToolGenerator().gen(custom_tools, system_prompt)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
if existing_system_message and (
|
|
request.tool_config.system_message_behavior == SystemMessageBehavior.append or not custom_tools
|
|
):
|
|
sys_content += interleaved_content_as_str(existing_system_message.content, sep="\n")
|
|
|
|
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
|
if tool_choice_prompt:
|
|
sys_content += "\n" + tool_choice_prompt
|
|
|
|
messages = [SystemMessage(content=sys_content.strip("\n")), *existing_messages]
|
|
return messages
|
|
|
|
|
|
def _get_tool_choice_prompt(tool_choice: ToolChoice | str, tools: List[ToolDefinition]) -> str:
|
|
if tool_choice == ToolChoice.auto:
|
|
return ""
|
|
elif tool_choice == ToolChoice.required:
|
|
return "You MUST use one of the provided functions/tools to answer the user query."
|
|
elif tool_choice == ToolChoice.none:
|
|
# tools are already not passed in
|
|
return ""
|
|
else:
|
|
# specific tool
|
|
return f"You MUST use the tool `{tool_choice}` to answer the user query."
|
|
|
|
|
|
def get_default_tool_prompt_format(model: str) -> ToolPromptFormat:
|
|
llama_model = resolve_model(model)
|
|
if llama_model is None:
|
|
logcat.warning("inference", f"Could not resolve model {model}, defaulting to json tool prompt format")
|
|
return ToolPromptFormat.json
|
|
|
|
if llama_model.model_family == ModelFamily.llama3_1 or (
|
|
llama_model.model_family == ModelFamily.llama3_2 and is_multimodal(llama_model.core_model_id)
|
|
):
|
|
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
|
|
return ToolPromptFormat.json
|
|
elif llama_model.model_family in (ModelFamily.llama3_2, ModelFamily.llama3_3):
|
|
# llama3.2 and llama3.3 models follow the same tool prompt format
|
|
return ToolPromptFormat.python_list
|
|
else:
|
|
return ToolPromptFormat.json
|