mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a super popular option for running training jobs. The config allows a user to specify some key fields such as a model, chat_template, device, etc the provider comes with one recipe `finetune_single_device` which works both with and without LoRA. any model that is a valid HF identifier can be given and the model will be pulled. this has been tested so far with CPU and MPS device types, but should be compatible with CUDA out of the box The provider processes the given dataset into the proper format, establishes the various steps per epoch, steps per save, steps per eval, sets a sane SFTConfig, and runs n_epochs of training if checkpoint_dir is none, no model is saved. If there is a checkpoint dir, a model is saved every `save_steps` and at the end of training. ## Test Plan re-enabled post_training integration test suite with a singular test that loads the simpleqa dataset: https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The test now uses the llama stack client and the proper post_training API runs one step with a batch_size of 1. This test runs on CPU on the Ubuntu runner so it needs to be a small batch and a single step. [//]: # (## Documentation) --------- Signed-off-by: Charlie Doern <cdoern@redhat.com>
160 lines
5.7 KiB
Python
160 lines
5.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from pathlib import Path
|
|
|
|
from llama_stack.apis.models.models import ModelType
|
|
from llama_stack.distribution.datatypes import (
|
|
ModelInput,
|
|
Provider,
|
|
ShieldInput,
|
|
ToolGroupInput,
|
|
)
|
|
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
|
|
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
|
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
|
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
providers = {
|
|
"inference": ["remote::ollama"],
|
|
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
"post_training": ["inline::huggingface"],
|
|
"tool_runtime": [
|
|
"remote::brave-search",
|
|
"remote::tavily-search",
|
|
"inline::rag-runtime",
|
|
"remote::model-context-protocol",
|
|
"remote::wolfram-alpha",
|
|
],
|
|
}
|
|
name = "ollama"
|
|
inference_provider = Provider(
|
|
provider_id="ollama",
|
|
provider_type="remote::ollama",
|
|
config=OllamaImplConfig.sample_run_config(),
|
|
)
|
|
vector_io_provider_faiss = Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
posttraining_provider = Provider(
|
|
provider_id="huggingface",
|
|
provider_type="inline::huggingface",
|
|
config=HuggingFacePostTrainingConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
)
|
|
inference_model = ModelInput(
|
|
model_id="${env.INFERENCE_MODEL}",
|
|
provider_id="ollama",
|
|
)
|
|
safety_model = ModelInput(
|
|
model_id="${env.SAFETY_MODEL}",
|
|
provider_id="ollama",
|
|
)
|
|
embedding_model = ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
provider_id="ollama",
|
|
provider_model_id="all-minilm:latest",
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": 384,
|
|
},
|
|
)
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::websearch",
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::wolfram_alpha",
|
|
provider_id="wolfram-alpha",
|
|
),
|
|
]
|
|
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Use (an external) Ollama server for running LLM inference",
|
|
container_image=None,
|
|
template_path=Path(__file__).parent / "doc_template.md",
|
|
providers=providers,
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"vector_io": [vector_io_provider_faiss],
|
|
"post_training": [posttraining_provider],
|
|
},
|
|
default_models=[inference_model, embedding_model],
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
"run-with-safety.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"vector_io": [vector_io_provider_faiss],
|
|
"post_training": [posttraining_provider],
|
|
"safety": [
|
|
Provider(
|
|
provider_id="llama-guard",
|
|
provider_type="inline::llama-guard",
|
|
config={},
|
|
),
|
|
Provider(
|
|
provider_id="code-scanner",
|
|
provider_type="inline::code-scanner",
|
|
config={},
|
|
),
|
|
],
|
|
},
|
|
default_models=[
|
|
inference_model,
|
|
safety_model,
|
|
embedding_model,
|
|
],
|
|
default_shields=[
|
|
ShieldInput(
|
|
shield_id="${env.SAFETY_MODEL}",
|
|
provider_id="llama-guard",
|
|
),
|
|
ShieldInput(
|
|
shield_id="CodeScanner",
|
|
provider_id="code-scanner",
|
|
),
|
|
],
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMA_STACK_PORT": (
|
|
"8321",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"OLLAMA_URL": (
|
|
"http://127.0.0.1:11434",
|
|
"URL of the Ollama server",
|
|
),
|
|
"INFERENCE_MODEL": (
|
|
"meta-llama/Llama-3.2-3B-Instruct",
|
|
"Inference model loaded into the Ollama server",
|
|
),
|
|
"SAFETY_MODEL": (
|
|
"meta-llama/Llama-Guard-3-1B",
|
|
"Safety model loaded into the Ollama server",
|
|
),
|
|
},
|
|
)
|