llama-stack-mirror/tests/integration
Ben Browning f0d56316a0 Use VectorStoreContent vs InterleavedContent in vector store files
This extracts the existing logic to convert chunks to
VectorStoreContent objects into a reusable method and uses that when
returning our list of Vector Store File contents.

It also adds an xfail test for deleting vector store files, as that's
not implemented yet but parking the implementation of that for now.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-19 10:58:29 -04:00
..
agents fix: enable test_responses_store (#2290) 2025-05-27 15:37:28 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
files test: skip files integrations tests for library client (#2407) 2025-06-05 13:42:10 -07:00
fixtures chore: remove recordable mock (#2088) 2025-05-05 10:08:55 -07:00
inference feat: Add suffix to openai_completions (#2449) 2025-06-13 16:06:06 -07:00
inspect test: add inspect unit test (#1417) 2025-03-10 15:36:18 -07:00
post_training feat: add huggingface post_training impl (#2132) 2025-05-16 14:41:28 -07:00
providers feat: Add NVIDIA NeMo datastore (#1852) 2025-04-28 09:41:59 -07:00
safety fix: misc fixes for tests kill horrible warnings 2025-04-12 17:12:11 -07:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
telemetry fix: skip failing tests (#2243) 2025-05-24 07:31:08 -07:00
test_cases feat: Add suffix to openai_completions (#2449) 2025-06-13 16:06:06 -07:00
tool_runtime fix: allow running vector tests with embedding dimension (#2467) 2025-06-19 13:29:04 +05:30
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io Use VectorStoreContent vs InterleavedContent in vector store files 2025-06-19 10:58:29 -04:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py fix: allow running vector tests with embedding dimension (#2467) 2025-06-19 13:29:04 +05:30
README.md chore: remove pytest reports (#2156) 2025-05-13 22:40:15 -07:00

Llama Stack Integration Tests

We use pytest for parameterizing and running tests. You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have three ways to point to a stack:
    • a URL which points to a Llama Stack distribution server
    • a template (e.g., fireworks, together) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Experimental, under development, options:

  • --record-responses: record new API responses instead of using cached ones

Examples

Run all text inference tests with the together distribution:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Running all inference tests for a number of models:

TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=together \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):

export FIREWORKS_API_KEY=<fireworks_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=fireworks \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Running Vector IO tests for a number of embedding models:

EMBEDDING_MODELS=all-MiniLM-L6-v2

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
   --embedding-model=$EMBEDDING_MODELS