mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
* support data: in URL for memory. Add ootb support for pdfs * moved utility to common and updated data_url parsing logic --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
156 lines
4.2 KiB
Python
156 lines
4.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import List, Optional, Protocol
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryBankDocument(BaseModel):
|
|
document_id: str
|
|
content: InterleavedTextMedia | URL
|
|
mime_type: str | None = None
|
|
metadata: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryBankType(Enum):
|
|
vector = "vector"
|
|
keyvalue = "keyvalue"
|
|
keyword = "keyword"
|
|
graph = "graph"
|
|
|
|
|
|
class VectorMemoryBankConfig(BaseModel):
|
|
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
|
|
embedding_model: str
|
|
chunk_size_in_tokens: int
|
|
overlap_size_in_tokens: Optional[int] = None
|
|
|
|
|
|
class KeyValueMemoryBankConfig(BaseModel):
|
|
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
|
|
|
|
|
|
class KeywordMemoryBankConfig(BaseModel):
|
|
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
|
|
|
|
|
|
class GraphMemoryBankConfig(BaseModel):
|
|
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
|
|
|
|
|
|
MemoryBankConfig = Annotated[
|
|
Union[
|
|
VectorMemoryBankConfig,
|
|
KeyValueMemoryBankConfig,
|
|
KeywordMemoryBankConfig,
|
|
GraphMemoryBankConfig,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
class Chunk(BaseModel):
|
|
content: InterleavedTextMedia
|
|
token_count: int
|
|
document_id: str
|
|
|
|
|
|
@json_schema_type
|
|
class QueryDocumentsResponse(BaseModel):
|
|
chunks: List[Chunk]
|
|
scores: List[float]
|
|
|
|
|
|
@json_schema_type
|
|
class QueryAPI(Protocol):
|
|
@webmethod(route="/query_documents")
|
|
def query_documents(
|
|
self,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse: ...
|
|
|
|
|
|
@json_schema_type
|
|
class MemoryBank(BaseModel):
|
|
bank_id: str
|
|
name: str
|
|
config: MemoryBankConfig
|
|
# if there's a pre-existing (reachable-from-distribution) store which supports QueryAPI
|
|
url: Optional[URL] = None
|
|
|
|
|
|
class Memory(Protocol):
|
|
@webmethod(route="/memory_banks/create")
|
|
async def create_memory_bank(
|
|
self,
|
|
name: str,
|
|
config: MemoryBankConfig,
|
|
url: Optional[URL] = None,
|
|
) -> MemoryBank: ...
|
|
|
|
@webmethod(route="/memory_banks/list", method="GET")
|
|
async def list_memory_banks(self) -> List[MemoryBank]: ...
|
|
|
|
@webmethod(route="/memory_banks/get", method="GET")
|
|
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]: ...
|
|
|
|
@webmethod(route="/memory_banks/drop", method="DELETE")
|
|
async def drop_memory_bank(
|
|
self,
|
|
bank_id: str,
|
|
) -> str: ...
|
|
|
|
# this will just block now until documents are inserted, but it should
|
|
# probably return a Job instance which can be polled for completion
|
|
@webmethod(route="/memory_bank/insert")
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None: ...
|
|
|
|
@webmethod(route="/memory_bank/update")
|
|
async def update_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
) -> None: ...
|
|
|
|
@webmethod(route="/memory_bank/query")
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse: ...
|
|
|
|
@webmethod(route="/memory_bank/documents/get", method="GET")
|
|
async def get_documents(
|
|
self,
|
|
bank_id: str,
|
|
document_ids: List[str],
|
|
) -> List[MemoryBankDocument]: ...
|
|
|
|
@webmethod(route="/memory_bank/documents/delete", method="DELETE")
|
|
async def delete_documents(
|
|
self,
|
|
bank_id: str,
|
|
document_ids: List[str],
|
|
) -> None: ...
|