llama-stack-mirror/llama_toolchain/cli/stack
Ashwin Bharambe b6a3ef51da Introduce a "Router" layer for providers
Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:

- The inference API should be a routing layer over inference providers,
  routed using the "model" key
- The memory banks API is another instance where various memory bank
  types will be provided by independent providers (e.g., a vector store
  is served by Chroma while a keyvalue memory can be served by Redis or
  PGVector)

This commit introduces a generalized routing layer for this purpose.
2024-09-16 17:04:45 -07:00
..
__init__.py API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51) 2024-09-03 22:39:39 -07:00
build.py Introduce a "Router" layer for providers 2024-09-16 17:04:45 -07:00
configure.py Introduce a "Router" layer for providers 2024-09-16 17:04:45 -07:00
list_apis.py Fixes to the llama stack configure script + inference adapters 2024-09-03 23:22:21 -07:00
list_providers.py provider_type -> provider_id ... less confusing 2024-09-16 12:10:13 -07:00
run.py Rename the "package" word away 2024-09-16 12:23:56 -07:00
stack.py CLI Update: build -> configure -> run (#69) 2024-09-16 11:02:26 -07:00